

KAMAYA

ELECTRONIC COMPONENTS
CATALOG

Products Guide

http://www.kamaya.co.jp

Chip product situation for environment

November, 2013

The reduction of the environmental hazardous materials(ex:Halogen,Antimony) of all chip product is promoted in KAMAYA now.

Products	RoHS	Pb free (Pb≦1000ppm)	Halogen free (CI or Br≦900ppm & CI+Br≦1500ppm	Antimony free (Sb ₂ O ₃ ≦900ppm)
Chip resistors				
[General] RMC Series	0	×	0	0
[General] RGC Series	0	×	0	0
[General] RNC Series	0	0	0	0
[Anti-Sulfuration] RMNW Series	0	×	0	0
[Anti-Sulfuration] RMAW Series	0	×	0	0
[High Voltage] RVC Series	0	×	0	0
[High Voltage] RZC Series	0	×	0	0
[Surge] RPC Series	0	×	0	0
[Trimable] FCR Series	0	×	0	0
[Sensing] RLC Series	0	×	0	0
[Sensing] RLP Series	0	0	0	0
[Sensing] RCC Series	0	0	0	0
[Sensing] RHC Series	0	×	0	0
Chip Network				
[Chip Network] RAC Series	0	×	0	0
Chip Fuses				
[Circuit Protection] FCC • FHC Series	0	0	0	0
[Circuit Protection] FCCR Series	0	0	0	0
[Circuit Protection] FMC Series	0	0	0	0
[Circuit Protection] SBF Series	0	0	0	0
Chip Fusible Resistors				
[Circuit Protection] FRC Series	0	×	0	0
ESD Suppressors				
[Circuit Protection] SPC Series	0	0	0	0
[Circuit Protection] HSPC Series	0	0	0	0
Chip Attenuators				
[High Frequency] RAC101A	0	×	0	0
Chip Thermistors				
[Temperature Compensation] LTC Series	0	0	0	0

<<NOTE>>The threshold in Pb free, Halogen free and Antimony free product shows the content in a homogeneous material.

"O"mean the items are matched the condition. "×"mean the items are not match the condition

RoHS Directive Compliance & REACH Action

- 1. RoHS Directive Compliance
- (1) All Kamaya products are in compliance with RoHS directive*1.
- (2) The following 6 materials are prohibited by RoHS directive.

-Lead(Pb)

-Hexavalent Chromium

-Cadmium(Cd)

-Polybrominated Bipheuyl(PBB)

-Mercury(Hg)

-Polybrominated Diphenyl Ether(PBDE)

- (3) PbO is content in glass materials of Kamaya products. However, this is exception stated by RoHS directive.
 - =>Directive 2011/65/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 8 June 2011 7(c)-I

Electrical and electronic components containing lead in a glass or ceramicother than dielectric ceramic in capacitors, e.g. piezoelectronic devices, or in a glass or ceramic matrix compound.

(4) About shipment product after January,2004 of our product(KAMAYA brand product),we ship it with an article (an electrode plating no lead article) for environment.

2. Kamaya REACH Action

Kamaya produce and develop our products in compliance with REACH*2 which is effective since June 2007.

Please contact Kamaya Sales department about contained material of SVHC*³ in Kamaya product, which need permission in REACH regulation.

- *1 RoHS Directive(The restriction of the certain hazardous substances in electrical and electronic equipment.)
- *2. REACH (The Regulation for Registration, Evaluation, Authorization, and Restriction of Chemicals)
- *3. SVHC (Substances of Very High Concern)

Substances in REACH regulation that especially affect the global environment and human body.

Please refer to ECHA (European Chemicals Agency) website for detail about SVHC in REACH regulation.

ECHA website :

(http://echa.europa.eu/chem_data/authorisation_process/candidate_list_table_en.asp)

- CONTENTS -

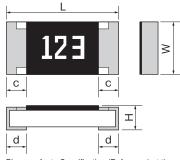
\mathbf{C} hip \mathbf{R} esistors				
General purpose	NEW NEW	Fixed Thick Film Chip Resistors; Rectangular Type Fixed Thick Film Chip Resistors; Rectangular & Precision Fixed Thin Film Chip Resistors; Rectangular Type	· RGC ·····	2 3 3
Anti-Sulfuration Trimmable & Sensing	NEW	Fixed Thick Film Chip Resistors; Rectangular Type & Anti-Sulfuration · Trimmable Chip resistors; Rectangular Type · · · · · · · · Fixed Thick Film Chip Resistors; Rectangular & High Ohm · · · · · · ·	RMNW, RMAW ····································	4 5 5
High Voltage		Fixed Thick Film Chip Resistors; Rectangular & High Voltage · · · · Fixed Thick Film Chip Resistors; Rectangular & Ultra High Voltage · · ·	RVC ······	6 6 7
Surge Sensing	NEW NEW	Fixed Thick Film Chip Resistors; Rectangular & Anti Surge Fixed Thick Film Chip Resistors; Rectangular Type & Low Ohm Fixed Thick Film Chip Resistors; Rectangular Type & Low Ohm Metal-Plate Chip Resistors; Low Ohm	RLC	8 9 10
Chip Network		Fixed Chip Resistor Networks; Rectangular Type		11
Chip A ttenuators & C hip T hermistors				
High Frequency Temperature Compensation		Chip Attenuators Linear Positive T-C Chip Thermistors; Rectangular Type		
$\operatorname{\mathbf{C}hip} \mathbf{F}$ usible $\operatorname{\mathbf{R}esistors}$				
Circuit Protection		Chip Fusible Resistors ; Rectangular Type	· FRC ·····	13
Chip Fuses Circuit Protection	NEW NEW	Chip Fuses; Rectangular Type	FMC ····································	16 18 19
ESD Suppressors				
Circuit Protection		ESD Suppressors		
Packaging for SMD		Packaging for Surface Mount Devices ·····		22
Leaded Resistors				
Pulse High Voltage Packaging for Leaded Resistors		Fixed Conductive Path Resistors Fixed Carbon Composition Resistors Fixed High Voltage Resistors; Precision Packaging for Leaded Resistors	· RH ·····	25
Capacitors				
		Multilayer Ceramic CapacitorFilm Capacitors		26 27
${f I}$ nformation				
SMD Product handling manual (F SMD Product handling manual (F Term Explanation Product Marking Standard Resistance Values and	RECOM RECOM	MENDED LAND PATTERN) MENDED SOLDERING CONDITION) DIS		28 30 31 32 34 35 36

Halogen Free

Antimony Free

Features

New line up Tolerance :0.5%, 0603mm to 2012mm.


01005 to 2512 inch size and Jumper chip available.

Precise dimension by Laser-scriber method(RMC1/20,RMC1/32).

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Walsin Technology Corporation OEM products (1206 to 0402 inch) are also available.

Dimensions

Please refer to Specification (Reference) at the Website for Marking.

Rated resistance value marking is 3-digit on the over coating except RMC1/16S & RMC1/20 & RMC1/32. 4-digit marking is available for F & G tolerance except RMC1/16, RMC1/16S & RMC1/20 & RMC1/32 type.

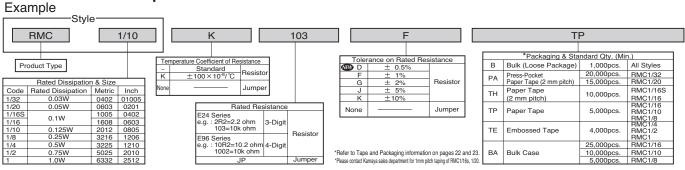
Unit: mm

Style	Metric	Inch	Product	L	W	Н	С	d	*Unit weight/pc.
RMC1/32	0402	01005	KAMAYA	0.4±0.02	0.2 ±0.02	0.13±0.02	0.08 ± 0.03	0.1 ±0.03	0.035mg
RMC1/20	0603	0201	KAMAYA	0.6±0.03	0.3 ±0.03	0.23±0.03	0.1 ±0.05	0.15 ± 0.05	0.16mg
RMC1/16S	1005	0402	KAMAYA Walsin	1.0±0.05	0.5 ±0.05	0.35±0.05	0.2 ±0.1	0.25 +0.05 -0.10	0.6mg
RMC1/16	1608	0603	KAMAYA Walsin	1.6±0.1	0.8 +0.15 -0.05	0.45±0.10	0.3 ±0.1	0.3 ±0.1	2mg
RMC1/10	2012	0805	KAMAYA Walsin	2.0±0.1	1.25 ±0.10	0.55±0.10	0.4 ±0.2	0.4 ±0.2	5mg
DMO1/0	2010	1000	KAMAYA	3.2±0.15	1.6 ±0.15	0.55±0.10	0.5 ±0.25	0.5 ±0.25	Oma
RMC1/8	3216	1206	WALSIN	3.1±0.1	1.6 ±0.1	0.6 ±0.15	0.45 ±0.20	0.5 ±0.2	9mg
RMC1/4	3225	1210	KAMAYA	3.2±0.15	2.5 ±0.15	0.55±0.15	0.5 ±0.25	0.5 ±0.25	16mg
RMC1/2	5025	2010	KAMAYA	5.0±0.15	2.5 ±0.15	0.55±0.15	0.6 ±0.2	0.6 ±0.2	25mg
RMC1	6332	2512	KAMAYA	6.3±0.15	3.2 ±0.15	0.55±0.15	0.6 ±0.2	0.6 ±0.2	40mg

*Values for reference

Ratings

	Size	Rated Dissipation		Rate	ed Resistar	nce Range)		Tolerance		ature Coefficient	Limiting Element	Isolation	Category
Style	Metric (Inch)	at 70 ℃ W	1Ω	10Ω	1000	Ω 1N	1Ω	10ΜΩ	on Rated Resistance		of Resistance	Voltage V	Voltage V	Range
RMC1/32	0402 (01005)	0.03 (0.5A)		4.7~9.1	0~91		-	1	F,J	=	+600~-200 ±300	15		
	(0.000)	(0.0)	0.47.004			100~1M			J		±200			
NEW	0000	0.05	0.47~0.91	~3.92			-	1			+1000~+300 +600~-200	- 1	50	-55~+12
RMC1/20	0603	0.05	100	4.02~9.76				-i	F,J		+350~-100	25		
1110101720	(0201)	(1.0A)	i	4.02 - 5.70	10~11	M	i	-	D,F,G,J			- 20	~	
			-		10 - 11	VI	1.1M~10	M	F,J		±200			
				1~9.76			1.1101 - 10	VI	J J	_	+1000~+300			_
NEW	1005	0.1		1 3.70					G,J		±200	1 1		
RMC1/16S	(0402)		:		10~1	VI		1	D.F	K	±100	1		
	(0402)	(1.0A)		i	:		1.02M~3.3M	i	D,É,J			1		
			i				1	→ 3.6M~10M	É,Ĵ	_	±200			
			0.47~0.91		i		i '		K	_	+1000~+300	50	100	
NEW				1~9.76	!		!	i	F,G,J	_	+500~-200	1 50	100	
_	1608	0.1	i		40	~3.3M		-	G,J	_	±200	1		
RMC1/16	(0603)	(2.0A)	1		10	~3.3IVI			D,F	K	±100	1		
	(0003)	(2.0A)			!		1 3	.6M	G,J	_	±200	1		
			i	i i			_	10M	F	K	±100	1		
			1	1				11M~22M	J	_	±200	1		
_			0.27~0.91		1		ı		K	_	+1000~+300			7
NEW				1~9.76					F,G,J	_	+500~-200			'
_	2012	0.125	T.		40.0			i	G,J	_	±200			
RMC1/10	(0805)	(2.0A)	!		10~2	2IVI		1	D,F	K	±100	150		
	(0000)	(Z.OA)					+	2.21M~3.3M — 3.6M~10M	D,F,G,J	_	±200			
			i_				i	— 3.6M∼10M	F,G,J	_	±200			
			1		1		1	11M~22M	J	_				
			0.22~0.91					1	K	_	+1000~+300			
	0010	0.05		1~9.76	- !			- !	F, G, J	_	+500~-200			
RMC1/8	3216	0.25	1		10~1			i	G, J	-	±200			
HIVIC 1/6	(1206)	(2.0A)			10 - 11	VI			F	K	±100			-55~+15
							1.02M~10	M	F, G, J		±200			
							i .	11M~24M	J					
			0.2~0.91				1	1	K	_	+1000~+300			
	3225	0.5		1~9.76			-		F, J	_	+500~-200	4 1		
RMC1/4	3225		i_		10~1				<u>G,</u> J	_	±200		500	
T TIVIC 174	(1210)	(2.0A)	<u> </u>		10 - 11	VI			F	K	±100		000	
			-				1.02M~10	11M~22M	F, G, J		±200	200		
							-	11M~22M	J			00		
			0.33~0.91	1~9.76				i	F, J	=	+1000~+300	- 1		
D1404/0	5025	0.75		1.~9.76			-		G, J		+500~-200 ±200	- 1		1
RMC1/2	(2010)	(2.0A)	<u> </u>		10~1	И	-	- i	F G, J	K	±100	1 1		1
	` , , , , ,	,,			10 11	•	1	1M~22M	- 5		±200	- 1		1
	+	+	0.33~0.91				<u> </u>	1 IVI: ~22IVI	K		+1000~+300	- 1		1
	0000		0.33~0.91	1~9.76			i	-i	F, J	_	+500~-200	1		1
RMC1	6332	1.0		19.76				-	G, J	-=-	±200	1 1		1
DIVIO I	(2512)	(2.0A)			10~11	M			F	K	±100	1 1		1
	1	` ′						1M~22M	- 5		±200	1 1		1


Note 1. E24 series is available , E96 series is available for tolerance F"(1%), E96 series is available for tolerance D $(\pm 0.5\%)$, F $(\pm 1\%)$. D $(\pm 0.5\%)$ is Kamaya products

Note2. Rated Voltage = $\sqrt{(Rated\ Dissipation)} \times (Rated\ Resistance)$. (d.c. or a.c. r.m.s. Voltage)

Note3. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value.

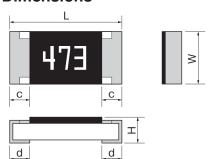
Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage

Note5. Jumper: Resistance value is less than 50m ohm.

RGC

Halogen Free

Antimony Free


Features

Suitable for precision applications.

High stabilized characteristics and Performance equivalent to thin film chip resistors.

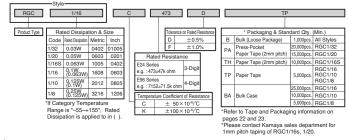
Please refer to Specification (Reference) at the Website to confirm the specification for more detail. Line up, 01005 sizes resistor.

Dimensions

Rated resistance value marking is with 3-digit (E24) or 4-digit (E96) on the over coating RGC1/16: only 3-digit marking is available.

RGC1/16S,1/20,1/32: only No marking is available.

1	Ini	~	'n


Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
RGC1/32	0402	01005	0.4±0.02	0.2 ±0.02	0.13 ±0.02	0.08 ± 0.03	0.1 ±0.03	0.035mg
RGC1/20	0603	0201	0.6±0.03	0.3 ±0.03	0.23 ±0.03	0.1 ±0.05	0.15 ±0.05	0.16mg
RGC1/16S	1005	0402	1.0±0.05	0.5 ±0.05	0.35 ±0.05	0.2 ±0.1	0.25 +0.05 -0.10	0.6mg
RGC1/16	1608	0603	1.6±0.1	0.8 +0.15 -0.05	0.45 ±0.10	0.25 ±0.10	0.3 ±0.1	2mg
RGC1/10	2012	0805	2.0±0.1	1.25 ±0.10	0.6 ±0.1	0.4 ±0.2	0.4 ±0.2	5mg
RGC1/8	3216	1206	3.2±0.15	1.6 ±0.15	0.6 ±0.1	0.5 ±0.25	0.5 ±0.25	9mg

*Values for reference

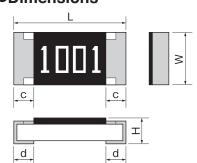
Ratings

Size Metric (Inch)	Rated Dissipation at 70°C W			ance Rang 1kΩ	e 1ΜΩ 	Tolerance on Rated Resistance	Temperati of Re Code	esistance	Limiting Element Voltage V	Isolation Voltage V	Category Temperature Range °C
0402 (01005)	0.03	-		100~100k		D(±0.5%)	С	± 50	15	50	-55~+125
0603 (0201)	0.05	1	51~9		1M	D(±0.5%)	C	±100 ± 50	25	30	-55+125
1005 (0402)	0.063	1	0~97.6	100~1M	1.02M~3.3M	D(±0.5%) F(±1%)	C K	±100 ± 50 ±100			-55~+155
1608 (0603)	0.1 *1(0.063)	3.3~9.76	0~97.6	100~1M	1.02M~3.3N	F(±1%) D(±0.5%) F(±1%)	C K	±100 ± 50 ±100	50	100	-55~+125
2012 (0805)	0.125 *1(0.1)	3.3~9.76	-	10~3.3M	1	F(±1%) D(±0.5%), F(±1%)	С	± 50	150		*1(-55~+155)
3216 (1206)	0.25 *1(0.125)	3.3~9.76		10~4.7M		F(±1%) D(±0.5%), F(±1%)	С	± 50	200		
	Metric (Inch) 0402 (01005) 0603 (0201) 1005 (0402) 1608 (0603) 2012 (0805) 3216	Metric at 70°C (Inch) 0.03 (01005) 0.03 (0201) 0.05 (0402) 0.063 (0201) 0.063 (0201) 0.063 (0200) 0.063 (0200) 0.063 (0200) 0.063 (0803) 0.1 (0	Metric at 70°C 10 O 10	Metric at 70°C 10 \(\text{10} \) 100 \(\text{10} \) 10	Metric at70°C 10Ω 100Ω 1tΩ 100 100 1tΩ 100 1	Metric at 70°C 100 1000 1k0 1MΩ 1MΩ 100−100k 1 MΩ 1 MΩ	Metric at 70°C 10 Ω 10 Ω 1 kΩ 1 MΩ State Resistance 10 Ω 10 Ω 1 kΩ 1 MΩ State Resistance 10 Ω 10 Ω 10 Ω 1 kΩ 1 MΩ State Resistance 10 Ω 10 Ω	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Metric at 70°C 10 \(\Omega \) 10 \(\Omega \) 18 \(\Omega \) 100 \(\Omega \) 100 \(\Omega \) 100 \(\Omega \)

Part Number Description

NEW RNC

Halogen Free


Antimony Free

Pb Free

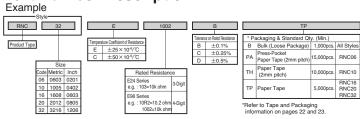
Features

Suitable for high precision, higher stability and reliability applications. Please refer to Specification (Reference) at the Website to confirm the specification for more detail. New line up 0402 inch and 0603 inch.

Dimensions

Rated resistance value is maked with 3-digit (E24) or 4-digit (E96) on the over coating. RNC06: only No marking is available.

Style	Metric	Inch	Product	L	W	Н	С	d	*Unit weight/pc.
RNC06	0603	0201	KAMAYA	0.6 ±0.03	0.3 ±0.03	0.23±0.03	0.1 ±0.05	0.15±0.05	0.16mg
RNC10	1005	0402	WALSIN	1.0 ±0.05	0.5 ±0.05	0.35±0.05	0.2 ±0.1	0.25±0.10	0.6mg
MBW RNC16	1608	0603	WALSIN	1.55±0.10	0.8 ±0.1	0.45±0.15	0.25±0.15	0.3 ±0.15	2mg
RNC20	2012	0805	KAMAYA	2.0 ±0.15	1.25 ^{+0.10} _{-0.05}	0.6 ±0.1	0.4 ±0.2	0.3 +0.2 -0.1	5mg
RNC32	3216	1206	KAMAYA	3.1 ±0.1	1.55 ^{+0.10} _{-0.05}	0.6 ±0.1	0.45±0.20	0.3 +0.2 -0.1	9mg


*Values for reference

Unit: mm

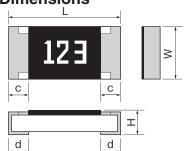
Ratings

Style	Size Metric (Inch)	Rated Dissipation at 70°C W	Rated Resistance Range	Tolerance on Rated Resistance	Tempe of Code	Resistance	Limiting Element Voltage V	Preferred Number Series for Resistors	Isolation Voltage V	Category Temperature Range °C
RNC06	0603 (0201)	0.03	100Ω~1kΩ 47Ω~4.99kΩ 5.1kΩ~10kΩ	B (±0.1%) D (±0.5%)	E E C	±25 ±25 ±50	15		50	-55~+125
RNC10	1005 (0402)	0.063	10Ω~100kΩ	B(±0.1%) C(±0.25%)	E C	±25 ±50	25		50	-55~±155
RNC16	1608 (0603)	0.063	4.7Ω~680kΩ	D(±0.5%)	E C	±25 ±50	50	E96 E24		-55+155
RNC20	2012 (0805)	0.1	100Ω~130kΩ 10Ω~130kΩ	B (±0.1%) C (±0.25%) D (±0.5%)		±25	75		100	-55~±125
RNC32	3216 (1206)	0.125	100Ω~180kΩ 10Ω~180kΩ	B (±0.1%) C (±0.25%) D (±0.5%)	E	±25	150			-55~+125

Note1. Rated Voltage = \(\sqrt{Rated Dissipation}\) x (Rated Resistance). (d.c. or a.c. r.m.s. Voltage) Note2. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value. Note3. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

Halogen Free

Antimony Free


Features

Special electrode structure, High anti-sulfuration performance, New Line up of 2 type Anti-sulfuration Chip Resistors. RMNW/Barrier type Barrier layer inside of electrode to prevent Sulfuration and Disconnection. RMAW/Special electrode type High anti-sulfuration performance electrode inside RMNW: qualified for Humid Sulfur Vapor Test ASTM B-809 60°C, 480h

RMAW: qualified for hydrogen sulfide test, H₂S: 3ppm, 40°C, 90%R.H., 1000h

AEC-Q200 qualified.

Dimensions

Rated resistance value marking is on the over coating except RMNW10 & RMAW10.

Unit: mm

Style	Metric	Inch	Product	L	W	Н	С	d	*Unit weight/pc.
RMNW10	1005	0402	WALSIN	1.0±0.05	0.5 ±0.05	0.35±0.05	0.2 ±0.10	0.25±0.10	0.6mg
RMAW10	1003	0402	WALSIN	1.0 ± 0.00	0.5 ±0.05	0.00 ± 0.00	0.2 ±0.10	0.20 ±0.10	o.omg
RMNW16	1608	0603	WALSIN	1.6±0.10	0.8 ±0.10	0.45±0.15	0.3 ±0.10	0.3 ±0.15	2mg
RANW16	1608	0003	WALSIN	1.0 ± 0.10	0.0 ±0.10	0.40 ± 0.10	0.0 ±0.10	0.0 ±0.10	Zilig
RMNW20	2012	0805	WALSIN	2.0±0.10	1.25±0.10	0.50±0.15	0.4 ±0.20	0.4 ±0.20	5mg
RANW20	2012	0805	WALSIN	2.0 ± 0.10	1.20 ± 0.10	0.50 ± 0.15	0.4 ±0.20	0.4 ±0.20	Jilly
RMNW32	2216	1206	WALSIN	3.1±0.10	1.6 ±0.10	0.6 ±0.15	0.5 ±0.20	0.45±0.20	9mg
RMAW32	3210	3216 1206	WALSIN	0.1 ± 0.10	1.0 ±0.10	0.0 ±0.13	0.5 _0.20	0.70 ± 0.20	Jilly
RMNW50	2025	2010	WALSIN	5.0±0.2	2.5 ±0.2	0.55±0.10	0.6 ±0.25	0.65 ± 0.25	25 mg

*Values for reference

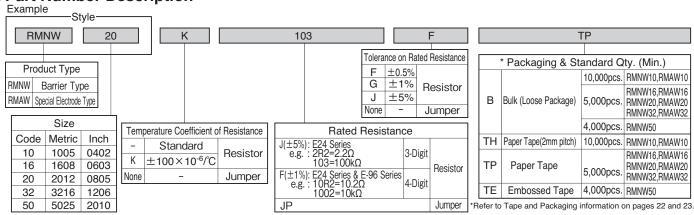
■Ratings

RMNW

Style	Size Metric	Rated Dissipation at 70°C	Combinatio Tole	Tempera of I	ature Coefficient Resistance	Limiting Element Voltage	Category Temperature Range °C		
Style	(Inch) W		D(±0.5%) F(±1%) J(=		J(±5%)	Code		10 ⁻⁶ /℃	Voltage
	1005	0.1	-	10.2	:~1MΩ	K	±100		
RMNW10	(0402)	(1.0A)	-	1.02ΜΩ	.∼10MΩ	_	±200		
	(0.02)	(1.07.)	-	1.0Ω	.∼10Ω	_	+400~-200	50	
	1608	0.1	10Ω~1MΩ	10.2	:~1MΩ	K	±100	30	
RMNW16	(0603)	(1.0A)	-	1.02ΜΩ	.∼10MΩ	_	±200		
	(0000)	(1.071)	_	1.0Ω~10Ω		_	+400~-200		-55~+155
RMNW20	2012	0.125				ı		150	33 1133
11101144420	(0805)	(1.5A)	-	10.2	2~1MΩ	K	± 100	130	
RMNW32	3216 (1206)	0.25 (2.0A)	_	1.02ΜΩ∼10ΜΩ		_	± 200	200	
RMNW50	5025 (2010)	0.5 (2.0A)	-	1.0Ω~10Ω		_	+400~-200	200	

●RMAW

<u></u>									
Style	Size Metric	Rated Dissipation at 70°C		ons of Rated Resistand rance on Rated Resis			ature Coefficient Resistance	Limiting Element Voltage	Category Temperature Range
Style	(Inch)	W	D(±0.5%)	F(±1%)	J(±5%)	Code	10°°/℃	Voltage	°C
RMAW10	1005 (0402)	0.1 (1.0A)		1		1	1	50	
RMAW16	1608	0.1		10.2	2~1MΩ	K	± 100	75	
111111111111111111111111111111111111111	(0603)	(1.0A) 0.125	_	1.02ΜΩ	ı~10MΩ	_	± 200		-55~+155
RMAW20	(0805)	(1.5A)		1.0Ω	1∼10Ω	_	+400~-200	150	
RMAW32	3216 (1206)	0.25 (2.0A)		I		ı	I	200	

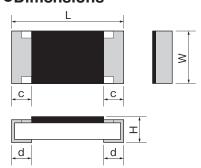

Note1. E24 series is available, E96 series is available for tolerance "D" (0.5%) and "F" (1%)

Note2. Rated Voltage = \(\sqrt{Rated Dissipation}\)\(\times(Rated Resistance)\). (d.c. or a.c. r.m.s. Voltage)

Note3. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value.

Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage

Note5. Jumper: Resistance Value is less than 50m ohm

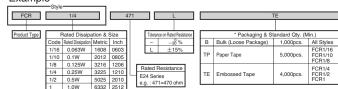


FCR

Trimmable device and replaceable with various resistors.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions


								Unit : mm
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FCR1/16	1608	0603	1.6±0.1	0.8 +0.15 -0.10	0.45±0.10	0.3±0.1	0.3±0.1	2mg
FCR1/10	2012	0805	2.0±0.1	1.25 ±0.10	0.55±0.10	0.4±0.2	0.4±0.2	5mg
FCR1/8	3216	1206	3.2±0.15	1.6 ±0.15	0.55±0.10	0.5±0.25	0.5±0.25	9mg
FCR1/4	3225	1210	3.2±0.15	2.5 ±0.15	0.55±0.15	0.5±0.25	0.5±0.25	16mg
FCR1/2	5025	2010	5.0±0.15	2.5 ±0.15	0.55±0.15	0.6±0.2	0.6±0.2	25mg
FCR1	6332	2512	6.3±0.15	3.2 ±0.15	0.55±0.15	0.6±0.2	0.6±0.2	40mg

*Values for reference

Ratings

Style	Size Metric (Inch)	Rated Dissipation at 70°C W	Rated Resistance Temperature Coefficient		Tolerance on Rated Resistance	Limiting Element Voltage	Preferred Number Series for Resistors	Isolation Voltage	Category Temperature Range °C
	(IIIGII)	"	Range	of Resistance 10 ⁴ /C		,	1103131013		Ü
FCR1/16	1608 (0603)	0.063	$10\Omega\!\sim\!4.7M\Omega$	±200		50		100	
FCR1/10	2012 (0805)	0.1				150			
FCR1/8	3216 (1206)	0.125			L (±15%) -(0~-30%)		E24	500	
FCR1/4	3225 (1210)	0.25	1Ω~9.1Ω 10Ω~4.7MΩ	+500~-200 ±200					−55~+125
FCR1/2	5025 (2010)	0.5				200			
FCR1	6332 (2512)	1.0							

Part Number Description

*Refer to Tape and Packaging information on pages 22 and 23

Note1. Rated Voltage = \(\times \) (Rated Dissipation) \(\times \) (Rated Resistance). (d.c. or a.c. r.m.s. Voltage)

Note2. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value

Note3. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

Note4. T.C.R.: ±100x109*C(10 ohm=*1M ohm) is available on your request.

Note5. The indicated values of Ratings are in the case without trimming.

RHC

Halogen Free

Antimony Free

Suitable for compact instrumentation, infrared rays, sensors, etc. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

								OTILL . ITILIT
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
RHC16	1608	0603	1.6±0.1	0.8 +0.15 -0.05	0.45±0.10	0.3±0.1	0.3±0.1	2mg
RHC20	2012	0805	2.0±0.1	1.25±0.10	0.55±0.10	0.4±0.2	0.4±0.2	5mg

*Values for reference

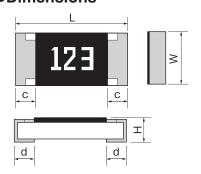
Ratings

	_	_						
Style	Size Metric (Inch)	Rated Voltage V	Rated Resistance Range	Tolerance on Rated Resistance		Preferred Number series for resistors		Category Temperature Range °C
			100MΩ \sim 270MΩ	J (± 5%)				
BUILDIA	RHC16 1608 (0603)		100MΩ ~ 4GΩ	K (±10%)			100	-55~+155
HHC16		15	100MΩ ~ 150GΩ	M (±20%) N (±30%) H (±50%)	0~-2,000	F12		-55'-+155
		1	100MΩ ~ 1GΩ	J (± 5%) K (±10%)	±2.000]		
RHC20	2012 (0805)		100MΩ ~ 10GΩ	M (±20%) N (±30%)	±2,000			-55~+125
	. ,		100GΩ ~ 150GΩ	H (±50%)	±4,000			

75G0	[
Rated Resistance	Г
e.g.: 100M=100M ohm 1G00=1G ohm 10G0=10G ohm	F
100G=100G ohm	Ŀ

	М			TP
Toleran	nce on Rated Resistance		* Pa	ackaging & Standard
J	± 5%		В	Bulk (Loose Package)
K	±10%		TP	Paper Tape
М	±20%		*Ref	er to Tape and Pa
N	±30%			mation on pages
Н	±50%			
	J K M	Tolerance on Rated Resistance J ± 5% K ±10% M ±20% N ±30%	Tolerance on Rated Resistance J ± 5% K ±10% M ±20% N ±30%	Tolerance on Rated Resistance J ± 5% B TP M ± 20% N ± 30% Info

RVC


Halogen Free

Antimony Free

Features

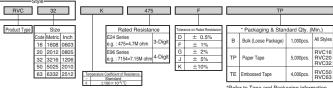
Higher Limiting Element Voltage compared with RMC series. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Rated resistance is marked with 3-digit (E24) or 4-digit (E96) on the over coating. RVC16 : only 3-digit marking is available.

Unit : mm

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
RVC16	1608	0603	1.6±0.1	0.8 +0.15 -0.05	0.45±0.10	0.3 ± 0.1	0.3 ± 0.1	2mg
RVC20	2012	0805	2.0±0.1	1.25±0.10	0.55±0.10	0.4 ± 0.2	0.4 ± 0.2	5mg
RVC32	3216	1206	3.2±0.15	1.6 ±0.15	0.55±0.10	0.5 ±0.25	0.5 ±0.25	9mg
RVC50	5025	2010	5.0±0.15	2.5 ±0.15	0.55±0.15	0.6 ± 0.2	0.6 ± 0.2	25mg
RVC63	6332	2512	6.3±0.15	3.2 ±0.15	0.55±0.15	0.6 ± 0.2	0.6 ± 0.2	40mg


Part Number Description

*Values for reference

Ratings

Style	Size Metric	Rated Dissipation at 70 °C	Limiting Element Voltage	Combinations of Rated Resistance Range and Tolerance on Rated Resistance				rature Coefficient of Resistance	Isolation Voltage	Category Temperature Range
0.,.0	(Inch)	W	V	D(±0.5%)	F(±1%), G(±2%)	J(±5%), K(±10%)	Code	10 ⁻⁶ /°C	V	°C
RVC16	1608	0.1	200	-	470Ω~	-10MΩ	K	±100	100	
110010	(0603)	0.1	200	-	47Ω∼464Ω			±200	100	
RVC20	2012	0.25	400	-	100Ω~10MΩ	100Ω~51MΩ	K	±100		
NVC20	(0805)	0.23	400	-	47Ω∼	-	±200		1	
BVC32	3216	0.25		$100k\Omega \sim 4.7M\Omega$	100Ω~10MΩ	100Ω~51MΩ	K	±100		
NVU32	(1206)	0.23	500	-	47Ω ∼	47Ω∼97.6Ω		±200		$-55 \sim +125$
RVC50	5025	0.5	300	-	470 Ω ~20M Ω	470Ω~51MΩ	K	±100	500	
NVC30	(2010)	0.5		-	47Ω∼	-464Ω	-	±200		
	0000			-	560 Ω ~20M Ω	560Ω~51MΩ	K	±100		
RVC63	RVC63 6332 1.0		800	-	100Ω~	100Ω∼549Ω		±200		
	(2012)			_	47Ω~	-97.6Ω	-	+500~-200		

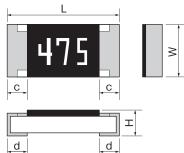
Note1. E24 series is available _F96 series is available for tolerance "D" (0.5%) and "F" (1%)
Note2. Rated Voltage = _(\text{Rated Dissipation}) \times (Rated Resistance), (d.c. or a.c. r.m.s. Voltage)
Note3. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value.
Note4. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

*Refer to Tape and Packagi on pages 22 and 23.

RZC

Halogen Free

Antimony Free


• Features

Suitable for the backlight inverter for large-screen LCD.

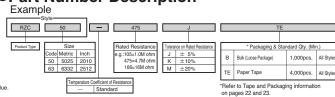
Higher Limiting Element Voltage than RVC series.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Rated resistace is marked with 3-digit(E24) on the over coating.

Rated resistace is marked with 3-digit(E24) on the over coating.											
Style	Metric	Inch	L	W	Н	С	d	*Unit/weight/pc.			
RZC50	5025	2010	5.0±0.15	2.5±0.15	0.55±0.15	0.5±0.2	0.6±0.2	25mg			
RZC63	6332	2512	6.3±0.15	3.2±0.15	0.55±0.15	0.6±0.2	0.6±0.2	40mg			
								*Values for reference			


Ratings

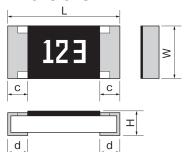
	_	,								
Style	Size Metric (Inch)	Rated Dissipation at 70 °C W		Anti-Rush Voltage Charactoristics V	Rated Resistance Range	Tolerance on Rated Resistance	Temperature Coefficient of Resistance 101/°C	Preferred Number Series for Resistors	Isolation Voltage V	Category Temperature Range °C
RZC50	5025 (2010)	0.5	1500	3000	1.0ΜΩ~16ΜΩ	J(±5%) K(±10%)	±200	E24	500	-55~+125
RZC63	6332 (2512)	1.0	2000	3000	1.0M12*-16M12	M(±20%)	1200	E24	300	-50-+125

Note1. Rated Voltage = \(\times \) (Rated Dissipation) \(\times \) (Rated Resistance). (d.c. or a.c. r.m.s. Voltage)

Note2. Limiting Element Voltage can only be applied to resistors, when the resistance values is equal to or higher than the critical resistance value.

Note3. Anti-Hush Voltage Charactoristics : 3,000/, 1sec 'Con', 'seec'off' : 1,000.00 times, Room temperature.

RPC


Halogen Free

Antimony Free

● Features Higher Anti surge performance compared with RMC series.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

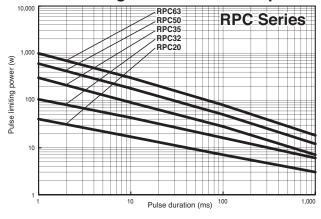
Datad registeres	valua ia marka	d with 2 digit or	n the over coating

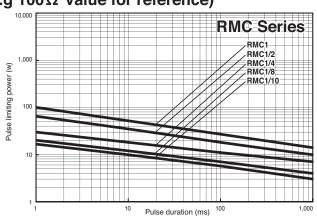
Unit : mm

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
RPC20	2012	0805	2.0±0.1	1.25 ±0.10	0.55±0.10	0.3±0.2	0.4±0.2	5mg
RPC32	3216	1206	3.2±0.15	1.6 ±0.15	0.55±0.10	0.3±0.2	0.5±0.25	9mg
RPC35	3225	1210	3.2±0.15	2.5 ±0.15	0.55±0.15	0.3±0.2	0.5±0.25	16mg
RPC50	5025	2010	5.0±0.15	2.5 ±0.15	0.55±0.15	0.3±0.15	0.6±0.2	25mg
RPC63	6332	2512	6.3±0.15	3.2 ±0.15	0.55±0.15	0.3±0.15	0.6±0.2	40mg

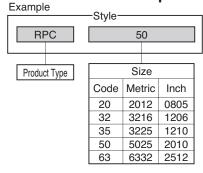
*Values for reference

Ratings


Style	Size Metric (Inch)	Rated Dissipation at 70°C W		d Resistance Range and officient of Resistance Temperature Coefficient of Resistance 10*/C	Tolerance on Rated Resistance	Limiting Element Voltage V	Preferred Number Series for Resistors	Isolation Voltage V	Category Temperature Range °C
RPC20	2012 (0805)	0.125				150			
RPC32	3216 (1206)	0.25	0.070	→ 200	J (± 5%)				
RPC35	3225 (1210)	0.5	$\frac{0.27\Omega \sim 0.91\Omega}{1\Omega \sim 1M\Omega}$	±200 ±100	K(±10%)		E24	500	-55~+155
RPC50	5025 (2010)	0.75	1.1M~22MΩ	±200	M(±20%)	200			
RPC63	6332 (2512)	1.0							


Note1. Rated Voltage = $\sqrt{\text{Rated Dissipation}} \times (\text{Rated Resistance})$. (d.c. or a.c. r.m.s. Voltage)

Note2. Limiting Element Voltage can only be applied to resistors, when the resistance value is equal to or higher than the critical resistance value.


Note3. Critical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

●1Pulse Limiting Power Curve Comparison (e.g 100Ω value for reference)

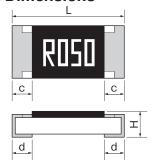
- * pulse limiting power curve is different from resistance value.
- * Please contact Kamaya sales department for the details.

103						
Rated Resistance						
E24 Series e.g. : 2R2=2.2 103=10l		3-Digit				

J					
Tolerance on Rated Resistance					
J	± 5%				
K	±10%				
М	±20%				

	. =							
	* Packaging & Stan	dard Qty. ((Min.)					
В	Bulk (Loose Package)	1,000pcs.	All Styles					
TP	Paper Tape	5,000pcs.	RPC20 RPC32					
TE	Embossed Tape	4,000pcs.	RPC35 RPC50 RPC63					

^{*}Refer to Tape and Packaging information on pages 22 and 23.


RLC

Halogen Free

Antimony Free

● Features Most suitable for a detection of current in power source circuits, motor circuits, etc. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Rated resistance is marked with 4-digit on the over coating. (RLC20~RLC63) RLC10 : only No marking is available.
Please contact KAMAYA for marking of RLC16.

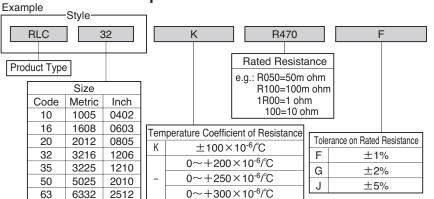
Unit : mm

								OTHE THIN
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
RLC10	1005	0402	1.0±0.05	0.5 ±0.05	0.35±0.05	0.2±0.1	0.25 + 0.05	0.6mg
RLC16	1608	0603	1.6±0.1	0.8 + 0.15 - 0.05	0.45±0.10	0.3±0.1	0.3 ±0.1	2mg
RLC20	2012	0805	2.0±0.15	1.25±0.10	0.6 ±0.1	0.4±0.2	0.4 ±0.2	5mg
RLC32	3216	1206	3.1±0.2	1.6 ±0.15	0.6 ±0.1	0.5±0.25	0.3 + 0.2 - 0.1	9mg
RLC35	3225	1210	3.1±0.2	2.5 ±0.15	0.6 ±0.15	0.5±0.25	0.3 + 0.2	16mg
RLC50	5025	2010	5.0±0.2	2.5 ±0.15	0.6 ±0.15	0.6±0.2	0.6 ±0.2	25mg
RLC63	6332	2512	6.3±0.2	3.2 ±0.15	0.6 ±0.15	0.6±0.2	0.6 ±0.2	40mg

*Values for reference

Ratings

Style	Size Metric (Inch)	Rated Dissipation at 70°C W	Rated Current Range A		Rated Resistance Rance and Tolerance Tolerance on Rated Resistance	ange,Temperature on Rated Resistance Temperature Coefficient of Resistance 10*fC	Isolation Voltage V	Category Temperature Range °C
RLC10	1005 (0402)	0.125	0.11~1.11	100mΩ~430mΩ 470mΩ~3.3Ω 3.6Ω~10Ω	F, J F, G, J F, J	0~+300 0~+200 ±100	100	
RLC16	1608 (0603)	0.25	0.14~1.58	$100m\Omega \sim 180m\Omega$ $200m\Omega \sim 430m\Omega$ $470m\Omega \sim 3.3\Omega$ $3.6\Omega \sim 10\Omega$	F, G, J	0~+250 0~+200 ±100	100	- −55~+125
RLC20	2012 (0805)	0.33	0.15~2.56	$\frac{50\text{m}\Omega\sim180\text{m}\Omega}{200\text{m}\Omega\sim430\text{m}\Omega}$	F, G, J	0~+250 0~+200		-55.4 + 125
RLC32	3216 (1206)	0.5	0.18~3.16	$\frac{470\text{m}\Omega{\sim}3.3\Omega}{3.6\Omega{\sim}10\Omega}$	F, J	±100	500	
RLC35	3225 (1210)	0.66	0.44~3.63	50mΩ~180mΩ		0~+250	300	
RLC50	5025 (2010)	0.75	0.47~3.87	$200 \text{m} \Omega \sim 430 \text{m} \Omega$ $470 \text{m} \Omega \sim 3.3 \Omega$	F, G, J	0~+200		
RLC63	6332 (2512)	1.0	0.55~4.47	4/011112~3.312		±100		


Note1. Rated Current = $\sqrt{\text{(Rated Dissipation)/(Rated Resistance)}}$ Note2. Rated Voltage = $\sqrt{\text{(Rated Dissipation)} \times \text{(Rated Resistance)}}$. (d.c. or a.c. r.m.s. Voltage) Note3. Limiting Element Voltage* is set up on RLC16, 20, 32, and rated current is not applied in the range of following rated of Resistance* 1 RLC16=1.41V, RLC20=1.58V, RLC32=1.81V *2 RLC16 and RLC20: $7.5\Omega < R$, RLC32: $6.2\Omega < R$ The Rated Current in the above range of the Rated Resistance Value is calculated as below way.

Rated Current=Limiting Element Voltage/Rated Resistance

Rated Resistance

Resistance	Code	Resistance	Code	Resistance	Code	Resistance	Code	Resistance	Code	Resistance	Code	Resistance	Code
50m Ω	R050	82mΩ	R082	200mΩ	R200	430mΩ	R430	750mΩ	R750	1.6Ω	1R60	4.3Ω	4R30
51mΩ	R051	90mΩ	R090	220mΩ	R220	470mΩ	R470	800mΩ	R800	1.8Ω	1R80	4.7Ω	4R70
56m Ω	R056	91mΩ	R091	240mΩ	R240	500mΩ	R500	820mΩ	R820	2.0Ω	2R00	5.1 Ω	5R10
60m Ω	R060	100mΩ	R100	250mΩ	R250	510mΩ	R510	900mΩ	R900	2.2Ω	2R20	5.6Ω	5R60
62m Ω	R062	110mΩ	R110	270mΩ	R270	560mΩ	R560	910mΩ	R910	2.4Ω	2R40	6.2Ω	6R20
65m Ω	R065	120mΩ	R120	300mΩ	R300	600mΩ	R600	1.0Ω	1R00	2.7Ω	2R70	6.8Ω	6R80
68m Ω	R068	130mΩ	R130	330mΩ	R330	620mΩ	R620	1.1Ω	1R10	3.0Ω	3R00	7.5Ω	7R50
70m Ω	R070	150mΩ	R150	360mΩ	R360	650mΩ	R650	1.2Ω	1R20	3.3Ω	3R30	8.2Ω	8R20
75m Ω	R075	160mΩ	R160	390mΩ	R390	680mΩ	R680	1.3Ω	1R30	3.6Ω	3R60	9.1 Ω	9R10
80m Ω	R080	180mΩ	R180	400mΩ	R400	700mΩ	R700	1.5Ω	1R50	3.9Ω	3R90	10Ω	100
Note3. Other	r nominal re	esistances va	alues are al	so available,	please con	tact KAMAYA	for further	information.					

Part Number Description

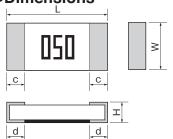
	TP							
	* Packaging & Stan	dard Qty. (N	1in.)					
В	Bulk (Loose Package)	1,000pcs.	All Styles					
TH	Paper Tape(2mm pitch)	10,000pcs.	RLC10					
TP	Paper Tape	5,000pcs.	RLC16 RLC20 RLC32					
TE	Embossed Tape	4,000pcs.	RLC35 RLC50 RLC63					

*Refer to Tape and Packaging information on pages 22 and 23.

Halogen Free

Antimony Free

Pb Free


Features

New lineup, 0201 & 1206 Size, Lower than 50m Ω.

Suitable for current sensing of small mobile devices.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

Resistance value is marking on surface. Please refer to Specification (Reference) on kamaya website. Please contact Kamaya Sales Dept. for marking of RCC16.

RCC10 & RCC06 is no marking.

Style	Metric	Inch	Rated Resistance	L	W	Н	С	d	*Unit weight/pc.			
RCC06	0603	0201	All Resistance	0.6 ± 0.03	0.3 ±0.03	$0.23^{+0.03}_{-0.10}$	0.15 + 0.05 - 0.10	0.15 ± 0.05	0.16mg			
RCC10	1005	0402	All Resistance	1.0±0.05	0.5 ±0.05	$0.35^{+0.05}_{-0.10}$	0.25 + 0.05 - 0.10	0.25 + 0.05 - 0.10	0.6mg			
RCC16	1600 0602	1600 0602	6 1608 0603 20mΩ	0603	1600 0602	20mΩ ≤ R	1.6±0.1	0.8 + 0.15 - 0.05	0.5 ±0.10	0.3 ±0.1	0.3 ±0.1	2mg
ncc io	1000	0003	R > 20m Ω	1.0 ± 0.1	0.0 - 0.05	0.5 ±0.10	0.5 ±0.1	0.55 ±0.1	Zilig			
RCC20	20 2012 0805	0805	20mΩ ≤ R	2.0±0.15	1.25±0.10	06 +010	0.4 ±0.2	0.4 ±0.2	5mg			
noc20	2012		R > 20m Ω	2.0 ± 0.15	1.25 ± 0.10	0.6 ±0.10	U.4 ±U.2	0.6 ±0.2	Jilly			
RCC32	3216	1206	All Resistance	3.1±0.2	1.6 ±0.15	0.6 ±0.10	0.5 ±0.25	0.5 ±0.25	9mg			

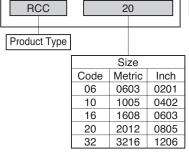
*Values for reference

Ratings

Style	Size Metric (Inch)	Rated Dissipation at 70°C W	Rated Current Range A	Combination of Rated R Temperature Coeffic Rated Resistance Range	esistance Range and ient of Resistance Temperature Coefficient of Resistance 10°/C	Tolerance on Rated Resistance	Isolation Voltage V	Category Temperature Range °C	
RCC06	0603(0201)	0.1	1.0 ~2.23	20mΩ ~100mΩ	0~+500	J (±5%)	50		
RCC10	1005	0.405	1.11~2.23	$25m\Omega \sim 50m\Omega$	0~+350				
RCC10	(0402)	0.125	1.11~2.23	51mΩ ~100mΩ	±150		100		
	1000			$10m\Omega \sim 30m\Omega$	0~+350				
RCC16	1608 (0603)	0.25	0.25	1.58~5.00	$33m\Omega \sim 50m\Omega$	0~+250	F (±1%)		
	(0000)			51mΩ ~100mΩ	±150	J (±5%)		-55~+125	
	0010			$10m\Omega \sim 27m\Omega$	0~+250	J (±5%)			
RCC20	2012 (0805)	0.33	1.81~5.74	$30 \text{m}\Omega \sim 50 \text{m}\Omega$	±150				
	(0003)			51mΩ ~100mΩ	±100		500		
DOGGO	3216	0.5	2.23~5.00	$20m\Omega \sim 33m\Omega$	0~+250		500		
RCC32	(1206)	0.5	2.23~5.00	36mΩ ~100mΩ	±100				

Note1. Rated Current = $\sqrt{\text{(Rated Dissipation)/(Rated Resistance)}}$ Note2. Rated Voltage = $\sqrt{\text{(Rated Dissipation)} \times \text{(Rated Resistance)}}$. (d.c. or a.c. r.m.s. Voltage)

Rated Resistance


Resistance	Code	Mark
10mΩ	R010	010
15mΩ	R015	015
20mΩ	R020	020
22mΩ	R022	022
24mΩ	R024	024
25mΩ	R025	025
27mΩ	R027	027
30mΩ	R030	030
33mΩ	R033	033
36mΩ	R036	036

Resistance	Code	Mark
39mΩ	R039	039
40mΩ	R040	040
43m Ω	R043	043
47mΩ	R047	047
50mΩ	R050	050
51mΩ	R051	051
56mΩ	R056	056
60mΩ	R060	060
62mΩ	R062	062
65mΩ	R065	065

Resistance	Code	Mark
68mΩ	R068	068
70m Ω	R070	070
$75m\Omega$	R075	075
$80m\Omega$	R080	080
82m Ω	R082	082
$90m\Omega$	R090	■90
91mΩ	R091	091
$100 \text{m}\Omega$	R100	R10

Please contact Kamaya Sales Dept. for any other resistance values.

Part Number Description Example

R050	
Rated Resistance	
e.g.: R050=50mΩ	
R100=100mΩ	

	F
Tole	rance on Rated Resistance
F	±1%
J	±5%

	TP		
	* Packaging & Stan	dard Qty. (M	lin.)
В	Bulk (Loose Package)	1,000pcs.	All Styles
PA	Press-Pocket Paper Tape (2mm pitch)	15,000pcs.	RCC06
TH	Paper Tape (2mm pitch)	10,000pcs.	RCC10
TP	Paper Tape	5,000pcs.	RCC16 RCC20 RCC32

*Refer to Tape and Packaging information on pages 22 and 23.

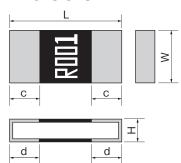
Precautions of use

- 1. Resistive element is on bottom surface.
- Please note for inspection of parts existence & nonexistence, inversion mounting by Inspection machine.
- 2. Resistance value will be changed by soldering condition.

Please design products in consideration of this change of resistance value.

Halogen Free

Antimony Free


Pb Free

●Features

New lineup, $1m\Omega$ to $5m\Omega$, $10m\Omega$, $15m\Omega$.

Suitable for current sensing of battery pack.
Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

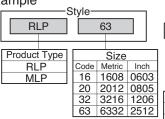
Dimensions

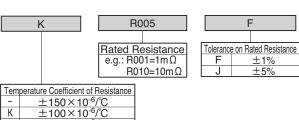
Resistance value of RLP series are marked like below.

The resistance value of RLP63 & MLP63 are marked with 4 characters on the overcoating.

				RLP32 are marl	ked with "2 nu	ımbers" & "_" oı	n the overcoatin	g.		
۱				ing of RLP16.						Unit : mm
١	Style	Metric	Inch	Rated Resistance	L	W	Н	С	d	*Unit weight/pc.
١	RLP16	1608	0603	10mΩ	1.6±0.1	0.8 ±0.1	0.3 ±0.10	0.2 ± 0.1	0.3 ±0.1	2mg
ı	RLP20	2012	0805	10mΩ	2.0±0.15	1.25±0.15	0.22±0.10	0.3±0.1	0.47±0.20	3mg
ŀ	IILI 20	2012	0000	lmΩ				1.1 =		12mg
				2mΩ			0.32±0.15	0.5		11mg
-				NEW 3mΩ				0.7±0.25	1.3 ±0.25	11mg
١				VEW 4mΩ					±0.25	12mg
-				5mΩ				1.0 =		11mg
-				NEW 6mΩ	001045		0.35±0.10	0.85		11mg
١	RLP32	3216	1206	VEW 7mΩ	3.2±0.15	1.6 ±0.15		0.7 =		11mg
-				NEW 8mΩ				0.6		10mg
١				NEW 9mΩ			0.3 ±0.10	0.75		9mg
١				10mΩ			0.28±0.10	0.5	E0.25	9mg
				12mΩ			0.00 0.40	0.65	±0.25	8mg
				ΝΕΨ 13mΩ			0.22±0.10	0.5	L0.05	7mg 6mg
				15mΩ		00 1005		0.5 = 2.2 =		50mg
				1mΩ 2mΩ		3.2 ±0.25	0.38±0.15		±0.25 ±0.25	42mg
				NEW 2mΩ NEW 3mΩ			0.45±0.15			57mg
				(NEW) 4mΩ			0.45±0.15 0.35±0.15	2.2	±0.25	43mg
-				5mΩ			0.33 ±0.13	1.95	⊦n 25	43mg
-				NEW 6mΩ			0.34±0.15	1.75=		41mg
-	RLP63			VEW 7mΩ				1.4		42mg
-				NEW 8mΩ			0.35±0.15		±0.25	41mg
-				NEW 9mΩ			0.00 = 0.10	0.8	±0.25	40mg
-				10mΩ				1.75		30mg
-		6332	2512	ΝΕΙ / 12mΩ	6.3 ± 0.25	3.1 ±0.25	0.23±0.15	1.4 =	±0.25	26mg
-				15mΩ		3.1 ±0.23		0.95	±0.25	26mg
ı				Μ 2mΩ			0.58±0.15			77mg
-				N EW 3mΩ			0.45±0.15	2.2	±0.25	63mg
١				Μ 4mΩ			0.34±0.15			48mg
-				5mΩ			0.51 ±0.15	1.1 =	⊦n 25	64mg
١	MLP63			NEW 6mΩ			0.5 ±0.15			55mg
١				NEW 7mΩ			0.5 ±0.15	0.6		55mg
١				ΝEW 8mΩ				1.1		43mg
١				NEW 9mΩ			0.35±0.15	0.8	±0.25	40mg
Į				10mΩ				0.5	±0.25	41mg

*Values for reference


Ratings


Ct. da	Size Metric	Rated Dissipation		Combination of Rated Res Temperature Coefficie	sistance Ra nt of Resista	Tolerance on	Isolation	Category Temperature	
Style	(Inch)	at 70°C	Range	Rated Resistance	Temperature of Res	e Coefficient istance	Rated Resistance	Voltage	Range
	(IIICII)	W	A	Range	Code	10 ⁻⁶ /°C		V	C
RLP16	1608	0.33	5.7	10mΩ	N	±70			
ALPIO	(0603)	0.55	5.7	1011152	K	±100			
RLP20	2012	0.5	7.0	10mΩ	N	±70			
HLP20	(0805)	0.5	7.0	1011152	K	±100			
			31.6	1mΩ	K	±100			
DI DOG	3216	1	01.0	111122	-	±150			
RLP32	(1206)		22.3, 18.2, 15.8, 14.1, 12.9, 11.9,	$2m\Omega$, $3m\Omega$, $4m\Omega$, $5m\Omega$, $6m\Omega$, $7m\Omega$,	N	±70	F(±1%)	100	-55~+155
			11.1, 10.5, 10, 9.1, 8.7, 8.1	$8m\Omega$, $9m\Omega$, $10m\Omega$, $12m\Omega$, $13m\Omega$, $15m\Omega$	K	±100	J(±5%)	100	33 1133
		2	44.7	1mΩ	N	±70			
RLP63			44.7	111152	-	±150			
HLP03	6332	4	22.3, 18.2, 15.8, 14.1, 12.9,	$2m\Omega$, $3m\Omega$, $4m\Omega$, $5m\Omega$, $6m\Omega$, $7m\Omega$,	N	±70			
	(2512)	'	11.9, 11.1, 10.5, 10, 9.1, 8.1	$8m\Omega$, $9m\Omega$, $10m\Omega$, $12m\Omega$, $15m\Omega$	K	±100			
MLP63	1 ' '	2	31.6, 25.8, 22.3, 20.0,	$2m\Omega$, $3m\Omega$, $4m\Omega$, $5m\Omega$, $6m\Omega$,	N	±70			
IVILEOS		2	18.2, 16.9, 15.8, 14.9, 14.1	$7m\Omega$, $8m\Omega$, $9m\Omega$, $10m\Omega$	K	±100			

Note1. Rated Current = √(Rated Dissipation)/(Rated Resistance)
Note2. Rated Voltage = √(Rated Dissipation)×(Rated Resistance). (d.c. or a.c. r.m.s. Voltage)
Note3. Please contact Kamaya Sales Dept. for any other resistance values.

Part Number Description

Example

	Т	E	
* P	ackaging & Sta	ndard Qty.	(Min.)
ТР	Paper Tape	5,000pcs.	RLP16 RLP20 RLP32
TE	Embossed Tape	4,000pcs.	RLP63 MLP63

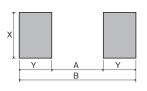
*Refer to Tape and Packaging information on page 22 and 23.

±70 ×10⁻⁶/°C

Chip Resistors Sensing & Chip Network

RLP, MLP

Rated Resistance


Style Resistance Marking RLP16 RLP20 $10m\Omega$ $10m\Omega$ No Marking 10 1mΩ 02 $2m\Omega$ 03 04 $4m\Omega$ 5mΩ 6mΩ 7mΩ 8mΩ 06 RLP32 08 9mΩ 10mΩ 09 10 12mΩ 3mΩ 15mΩ 1mΩ 15 R001 $2m\Omega$ R002 4mΩ R004 5mΩ R005 6mΩ R006 R007 RLP63 7mΩ 8mΩ 9mΩ R008 R009 10mΩ 12mΩ R012 15mΩ R015 $2m\Omega$ $3m\Omega$ $4m\Omega$ R003 R004 $5m\Omega$ $6m\Omega$ $7m\Omega$ R005 R006 R007 R008 MLP63

8mΩ 9m0

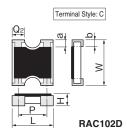
10mΩ

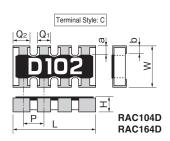
R009

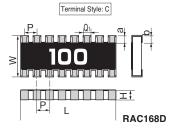
Recommended land Pattern

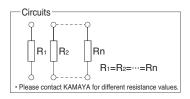
nu Pall	••••					U	nit : mm
Style	Metric	Inch	Rated Resistance	Α	В	Χ	Υ
RLP16	1608	0603	10mΩ	1.0	2.2	0.8	0.6
RLP20	2012	0805	10mΩ	8.0	2.7	1.35	0.95
			lmΩ	1.0			1.45
			2mΩ	2.1			0.9
			3mΩ	0.8			1.4
			<u>4mΩ</u>	1.0			1.45
			5mΩ	1.4			1.25
			6mΩ				1.20
RLP32	3216	1206	7mΩ		3.9	1.7	
1121 02			<u>8mΩ</u>				
			9mΩ	2.1			
			10mΩ	2.1			0.9
			12mΩ				
			13mΩ				
			15mΩ				
			1mΩ	2.0			2.8
			2mΩ				
			3mΩ	1.8			2.9
			4mΩ				
			5mΩ	2.4			2.6
			6mΩ				
RLP63			7mΩ				
			8mΩ	4.0			
			9mΩ	4.0			1.8
			10mΩ				
	6332	2512	12mΩ		7.6	3.5	
			15mΩ				
			2mΩ				
			3mΩ	1.8			2.9
			4mΩ				
			5mΩ				
MLP63			6mΩ				
IVILIFOS			7mΩ	4.0			1.8
			8mΩ				1.8
1			9mΩ				
			10mΩ				

Halogen Free


*Values for reference


Antimony Free


RAC


High-density SMD packaging contributes higher productivity and reduces assembly costs. Please refer to Specification (Reference) at the Website to confirm the specification for more detail. Walsin Technology Corporation OEM products are also available.

Dimensions

Note. Please contact KAMAYA for the detail of marking on the over coating.

Unit : mm

Style	Terminal Style	Product	L	W	Н	Q ₁	* Q 2	а	b	*P	*Unit weight/pc.
RAC102D	С	KAMAYA	1.0±0.05	1.0±0.05	0.35±0.05		0.33±0.10	0.15±0.10	0.25 +0.05	0.65	1.1mg
NAC 102D		WALSIN	1.0±0.1	1.0±0.1	0.35±0.10	_	0.34±0.05	0.2 ±0.15	0.25±0.17	0.03	1.11119
RAC104D	С	KAMAYA	2.0±0.1	1.0±0.1	0.35±0.05	0.35±0.1	0.45±0.10	0.15±0.10	0.25±0.10	0.5	2.1mg
RAC 104D	C	WALSIN	2.0±0.1	1.0±0.1	0.45±0.10	0.3 ±0.05	0.4 ±0.1	0.2 ±0.1	0.25±0.10	0.5	2.11119
RAC164D	С	KAMAYA	3.2±0.1	1.6±0.1	0.5 ±0.1	0.4 ±0.15	0.6 ±0.15	0.3 ±0.2	0.25±0.15	0.0	7mg
RAC 104D		WALSIN	3.2±0.1	1.6±0.1	0.5 ±0.1	0.4 ±0.1	0.6 ±0.1	0.3 ±0.1	0.3 ±0.2	0.8	7 mg
RAC168D	С	WALSIN	3.8±0.1	1.6±0.1	0.45±0.1	0.3 ±0.1	_	0.3 ±0.1	0.3 ±0.1	0.5	8.3mg

*Values for reference

Ratings

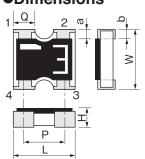
Style	Rated Dis		Rated Current of Jumper	Rated Resistance	Tolerance on Rated Resistance	Temperature Coefficient of Resistance	Limiting Element Voltage	Preferred Number Series for	Isolation Voltage	Category Temperature Range
	W/Element	W/pc.	A	Range	Hatied Hesistanice	10°/C	۷.	Resistors	V	Ĉ
RAC102D		0.125			1/ 1-50/)		25		50	
RAC104D		0.25			J(±5%)		25		50	
RAC164D	0.063	0.25	1.0	10Ω~1MΩ	F(±1%)J(±5%)	±200	50	E24	100	-55~+125
RAC168D		0.25			J(±5%)		25			

Note 1. Rated Voltage = \(\int \)(Rated Dissipation) \(\times \)(Rated Resistance). (d.c. or a.c. r.m.s. Voltage)

Note 2. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value Notes. Orlicat Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

Exam		vle											
RAC	10	2	D	100	3		J	С			В		
Product Type	Size	No. of Elemen	ts Circuits	'			Ten	minal St	yle		* Packaging & Stand	dard Qty.	Min.)
	10 W:1.0mm 16 W:1.6mm	4 4-Eleme					C Con	vex be With	corner	В	Bulk (Loose Package)	1,000pcs.	All Styles
		8 8-Eleme	Rated Resist	tanco	1 1	nleranne r	n Rated Re	eietanna	l	тн	Paper Tape (2 mm pitch)		RAC102D RAC104D
e.			E24 Series e.g.:103=10k ohm	Resistor	F	±	1%	Resistor		TP	Paper Tape		RAC164D RAC168D
			JP	Jumper	None	_		Jumper		Ref	er to Tape and Pac	kaging in	formation

RAC101A


Halogen Free

Antimony Free

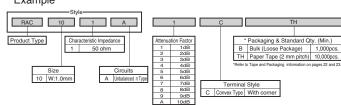
Features

Suitable for use at DC and up to UHF band frequencies. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

1 2 0
Unbalanced π Type

Style **Terminal Style** W Н Q b Р *Unit weight/pc. 1.0 +0.10 RAC101A C 1.0 ± 0.1 0.35 ± 0.1 0.33 ± 0.10 0.15±0.10 0.25 ± 0.10 0.65±0.10


*Values for reference

Dot mark on Termination 1 Attenuation factor on Termination 2 to 3

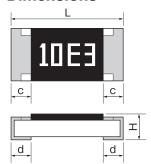
Ratings

Style	Characteristic Impedance	Attenuation symbol	on Factor dB	Tolerance on Attenuation Factor dB	Voltage Standing Wave Ratio	Frequency Range	Rated Input Power mW/package	Category Temperature Range °C
		2 3	1 2 3					
		4 5	4 5	±0.3	1.2max.	DC ≤ f ≤ 3GHz	100	-40~+125
RAC101A	50 ohm	6 7	6 7					
		9 A	9	±0.4				

Part Number Description Example

LTC

Halogen Free


Antimony Free

Pb Free

Features

Linearity of resistance change in wide temperature range Suitable for temperature compensation, temperature sensing and controling, and circuit protection applications. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

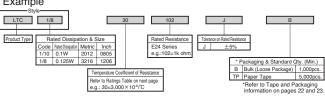
Rated resistance and T.C.R. value are marked with 4-digit on the over coating.

e.g. 10E3··· 10:1,000×10⁻⁶/°C

E3: 1.5k ohm

Please contact KAMAYA Sales department for further information.

Unit: mm


Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
LTC1/10	2012	0805	2.0±0.15	1.25 +0.10	0.6±0.1	0.4 ±0.2	$0.3^{+0.2}_{-0.1}$	5mg
LTC1/8	3216	1206	3.1±0.1	1.55±0.10	0.6±0.1	0.45±0.20	$0.3^{+0.2}_{-0.1}$	9mg

*Values for reference

Ratings

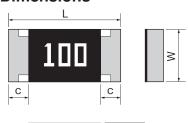
• nati	iigs	•						
Temperature Coefficient of Resistance 10 ⁻⁶ /C Code		Resistance Temperature		tance Range pation at 70°C)	Tolerance on	Preferred Number	Isolation	Category Temperature
		Coefficient Tolerance	LTC1/10 (0.1W)	LTC1/8 (0.125W)	Rated Resistance	Series for Resistors	Voltage V	Range °C
500	05	±100×10 ⁻⁶ /°C	100 ohm~ 5.1k ohm	100 ohm~ 10k ohm				
800	08	±150×10°/°C	100 ohm~ 5.1k ohm	100 ohm~ 10k ohm	1			
1,000	10	+ 450/	100 ohm~ 5.1k ohm	100 ohm~ 10k ohm	1			
1,500	15	±15%	100 ohm~ 3.3k ohm	100 ohm~ 4.7k ohm		E24	100	-40~+125
2,000	20		100 ohm~ 3.3k ohm	100 ohm~ 4.7k ohm				
2,400	24		100 ohm~ 1.6k ohm	100 ohm~ 2.2k ohm	1			
2,800	28		100 ohm~ 3.3k ohm	100 ohm~ 3.6k ohm	J(±5%)			
3,000	30		100 ohm~ 3.3k ohm	100 ohm~ 3.6k ohm]			
3,300	33	±10%	100 ohm~ 3.3k ohm	100 ohm~ 3.6k ohm	1			
3,600	36		51 ohm~ 910 ohm	51 ohm~ 1.2k ohm	1			
3,900	39		51 ohm~ 560 ohm	51 ohm~ 910 ohm	1			
4,200	42		33 ohm~ 360 ohm	33 ohm~ 470 ohm	1			
4,500	45	1	33 ohm~ 200 ohm	33 ohm~ 180 ohm	1			

Part Number Description Example

Note. The following information is available.

1. Test methods for Attenuation Factor and VSWR characteristics.

FRC


Halogen Free

Antimony Free

Suitable for battery circuit and power supply circuit.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail

Dimensions

エ

d

Unit: mm

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FRC16	1608	0603	1.6±0.1	0.8 +0.15 -0.05	0.45±0.10	0.3±0.1	0.3±0.1	2.2mg
FRC20	2012	0805	2.0±0.1	1.25±0.10	0.6 ± 0.1	0.4 ± 0.2	0.4 ± 0.2	6mg
FRC32	3216	1206	3.2±0.2	1.6 ±0.15	0.6 ±0.1	0.5±0.25	0.5±0.25	10mg

*Values for reference

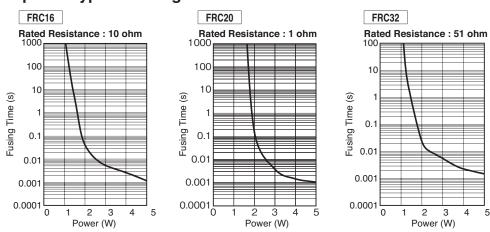
Ratings

Ob. de	Size Metric	Rated Dissipation	Rated Resistance	Tolerance on	Temperature Coefficient		Fusing Characteristic			Category Temperature
Style	(Inch)	W	Range	Rated Resistance	of Resistance Series for Resistors		Applied Power	Fusing Time	open-circuit voltage	Range
FRC16	1608 (0603)	0.063	3.9Ω∼51Ω		±500		1.89W			
FRC20	2012 (0805)	0.1	1Ω~51Ω	J(±5%)	±1,000	E24	2.0W	30s max.	50V	-55~+125
FRC32	3216 (1206)	0.125	1Ω~51Ω 56Ω~100Ω		±500		2.5W			

Note1. Rated Voltage = $\sqrt{(\text{Rated Dissipation}) \times (\text{Rated Resistance})}$. (d.c. or a.c. r.m.s. Voltage) Note2. Contact us for further information on other style, resistance and pre-arcing time-current characteristic than those mentioned above.

Note3. Contact us for information when inrush and surge voltage are supposed to be applied.

Note4. Maximum open circuit voltage is the value of voltage applicable to both ends of resistors, when a resister is open condition in a circuit. This voltage shall be corresponding to 1,000 times the rated dissipation or maximum open circuit which is the less severe.


Part Number Description

Example of Typical Fusing Characteristics

1206

3216

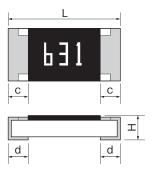
FCC,FHC

Halogen Free

Antimony Free

Pb Free

Fast-Atcting Type. Suitable for over-current protection of the circuit of miniature portable equipment.


Please contact Kamaya Sales Dept, if you need to confirm Inrush current endurance, Anti-pulce performance etc.

We can provide Application Guide for FCC,FHC selection. We can provide Application Guide for FCC,FHC selection.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail. Certified UL, c-UL. File No.: E176847

Dimensions

Current value is marked on the cover coating. Please refer to Ratings table as below.

Patings/Option Code: AD AB AA

Ratings/Op	tion Code	e ∶ AD,	AB, AA

- 1	Late.	mm

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FCC10	1005	0402	1.0±0.05	0.5 ±0.05	0.4 ±0.05	0.2±0.1	0.25±0.10	0.8mg
FHC10	1005	0402	1.0 ± 0.05	0.5 ±0.05	0.4 ±0.05	0.2±0.1	0.25 ± 0.10	U.ong
FCC16	1608	0603	1.6±0.1	0.8 +0.15	0.45±0.10	0.3±0.15	0.3 ±0.1	2mg
FHC16	1000	0003	1.0 ± 0.1	U.O -0.05	0.45±0.10	0.5±0.15	0.3 ±0.1	Zilig
FCC20	2012	0805	2.0±0.1	1.25±0.10	0.6 ±0.1	0.4±0.2	0.4 ±0.2	6mg
FHC20	2012	0003	2.0 ± 0.1	1.25 ± 0.10	0.0 ±0.1	0.4±0.2	0.4 ±0.2	onig
FCC32	3216	1206	3.2±0.2	1.6 ±0.15	0.6 ±0.1	0.5±0.25	0.5 ±0.25	10mg
FHC32	3210	1200	3.2 ± 0.2	1.0 ±0.15	0.65±0.10	0.5±0.25	0.5 ±0.25	11mg

● Ratings/Option Code : LB

<u> </u>								
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FCC10	1005	0402	1.0±0.05	0.5 ±0.05	0.35 Max.	0.2±0.1	0.25±0.10	0.6mg

*Values for reference

Ratings/Option Code : AD (Fast-Acting type)

	ize			ed Current	Internal Resistance	Manda	Intermenting Deting	Time/Current Characteristics	Working Temperature Range
Metric	Inch	Style	Code	Α	m ohm max.	Mark	Interrupting Rating	Time/Current Characteristics	°C
			151	0.15	2,700	0	32Vd.c. 35A		
			201	0.2	1,000	Z			
			251	0.25	750	С			
			321	0.315	620	D			
		FCC10	401	0.4	340	E			
		FCC10	501	0.5	290	F	30Vd.c. 35A		
1005	0402		631	0.63	210	I			
1005	0402		801	0.8	150	K			
			102	1.0	120	L			
			132	1.25	90	M			
			162	1.6	55	N			
		FHC10	202	2.0	40	S	24Vd.c. 35A		
		111010	252	2.5	36	T			
			322	3.15	26	U			
			151	0.15	4,000	OD	50Vd.c. 35A		
			201	0.2	1,800	ZD			
			251	0.25	1,000	CD			
			321	0.315	750	DD			
			401	0.4	330	ED			
			501	0.5	280	FD			−55 ∼+125
		FCC16	631	0.63	200	ID	36Vd.c. 35A		
1608	0603		801	0.8	130	KD			
			102	1.0	110	LD			
			132	1.25	85	MD			
			162	1.6	70	ND SD			
			202 252	2.0	55	TD	32Vd.c. 35A	1	
			322	2.5 3.15	45 26	UD	32 VU.C. 33A	Rated Current × 250% Opening Time 5s max.	
		FHC16	402	4.0		XD	24Vd.c. 35A		
			402	0.4	19 330	401			
			501	0.5	270	501			
			631	0.63	190	631			
			801	0.8	130	801			
		FCC20	102	1.0	100	102	50Vd.c. 50A		
		FCC20	132	1.25	80	132	50 Va.C. 50A		
2012	0805		162	1.6	65	162			
			202	2.0	55	202			
			252	2.5	40	252			
			322	3.15	26	UD		1	
		FHC20	402	4.0	19	XD	32Vd.c. 50A		
			502	5.0	14	YD	24Vd.c. 50A	1	
			201	0.2	1,800	201		1	
			251	0.25	1,000	251			
			321	0.315	750	321			
			401	0.4	350	401			
			501	0.5	295	501			
			631	0.63	200	631			
		FCC32	801	0.8	140	801	64Vd.c. 50A		
3216	1006		102	1.0	110	102			
3210	1206		132	1.25	85	132			
			152	1.5	78	152			
			162	1.6	75	162		50A	
			202	2.0	65	202			
			252	2.5	45	252			
			322	3.15	26	UD			
		FHC32	402	4.0	19	XD	32Vd.c. 50A		
			502	5.0	14	YD			

FCC, FHC

■Ratings/Option Code : AB (Fast-Acting type)

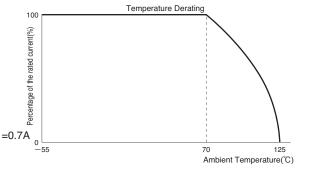
S	ize	Style	Rat	ted Current	Internal Resistance	Mark	Interrupting Rating	Time/Current Characteristics	Working Temperature Range
Metric	Inch	Style	Code	A	m ohm max.	IVIAIK	interrupting riating	Time/Ourient Onaracteristics	C
			201	0.2	2,400	Z			
			251	0.25	1,000	С			
			321	0.315	750	D			
			401	0.4	620	E			
			501	0.5	340	F			
		FCC10	631	0.63	290	1	001/1 054		
1005	0402	1 0010	751	0.75	220	Α	30Vd.c. 35A		
1005	0402		801	0.8	210	K			
			102	1.0	150	L			
			132	1.25	120	M			
			152	1.5	100	Н			
			162	1.6	90	N			
		FHC10	202	2.0	55	S	24Vd.c. 35A		
		111010	252	2.5	40	Т	24Va.C. 00A		
			201	0.2	3,200	ZB		Rated Current × 200% Opening Time 5s max.	−55∼+125
		FCC16	251	0.25	1,800	CB			
			321	0.315	1,000	DB	36Vd.c. 35A		
			401	0.4	750	EB			
			501	0.5	330	FB			
			631	0.63	280	IB			
1608	0603		751	0.75	210	AB			
1608	0603		801	0.8	200	KB			
			102	1.0	130	LB			
			132	1.25	110	MB			
			152	1.5	95	HB			
			162	1.6	85	NB			
			202	2.0	70	SB			
		FHC16	252	2.5	40	TB	32Vd.c. 35A		
			501	0.5	330	FB			
			631	0.63	270	IB			
			801	0.8	190	KB			
0040	0005	FCC20	102	1.0	130	LB	50Vd.c. 50A		
2012	0805		132	1.25	100	MB			
			162	1.6	80	NB			
			202	2.0	65	SB			
		FHC20	252	2.5	40	TB	32Vd.c. 50A		

■Rating/Option Code : LB (Fast-Acting type)

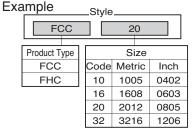
S	Size Style Rate Metric Inch Style Code		Rated Current		Internal Resistance	Morle	Interrupting Rating	Time/Current Characteristics	Working Temperature Range
Metric			A	m ohm max.	m ohm max. Mark		Time/Guiterii Griafacteristics	°C	
1005	0402	FCC10	321	0315	750	3	30Vd.c. 35A	Rated Current × 200% Opening Time 5s max.	-55~+125

■Rating/Option Code : AA (Fast-Acting type)

S	ize	Style	Ra	ated Current	Internal Resistance	Mark	Interrupting Pating	Time/Current Characteristics	Working Temperature Range
Metric	Inch	Style	Code	A	m ohm max.	iviair	interrupting nating	Time/Ourient Onaracteristics	°C
			501	0.5	270	501			
1			631	0.63	190	631			
1			801	0.8	130	801		D	
2012	0805	FCC20	102	1.0	100	102	50Vd.c. 50A	Rated Current × 200%	-55~+125
-0	0000	1 0020	132	1.25	80	132	30 Vu.C. 30A	Opening Time 120s max.	
1			162	1.6	65	162		- promise in the second	
1			202	2.0	55	202			
1			252	2.5	40	252			


Recommended Derating for Rated Current

•Nominal Derating
Option Code AD:Nominal Derating ≤ 80% of Rated Current Option Code AB,LB:Nominal Derating ≤ 70% of Rated Current


·Temperature Derating

Please refer to the following graph regarding the current derating value for ambient temperature.

Ex.) If FCC16 102AB (Rated Current:1.0A) is used under ambient temperature 70°C, Kamaya recommends, less than the current value derated as below,
Rated Current: 1.0A× (Nominal Derating: 70%×Temperature Derating: 100%) =0.7A

Part Number Description

202						
Rated Curr	ent					
e.g. : 501=0.5A 132=1.25A 202=2.0A	3-Digit					

	AD
	Option Code
Code	Clearing Time
AD	Within 5s under 250% of Rated Current
AB LB	Within 5s under 200% of Rated Current
AA	Within 120s under 200% of Rated Current

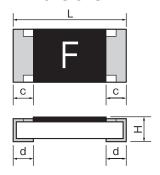
	TP		
	* Packaging & Stand	dard Qty. (N	lin.)
В	Bulk (Loose Package)	1,000pcs.	All Styles
PA	Press-Pocket Paper Tape (2mm pitch)	10,000pcs.	FCC10 FHC10
TP	Paper Tape	5,000pcs.	FCC16 FHC16 FCC20 FHC20 FCC32 FHC32
TH	Paper Tape (2mm pitch)	10,000pcs.	FCC10(LB)

*Refer to Tape and Packaging information on pages 22 and 23.

Option Code: AB, WB / Low Ohm & Fast Acting Option Code: AH, WH / In-rush Withstand

Halogen Free

Antimony Free


Pb Free

Option code: AB, WB / Low internal resistance compared with FCC/FHC16 AB series for low power consumption and voltage dropping.
Option code: AH, WH / High anti pulse perfomance.
New line up Option code WB, WH for 0603size.
Please contact Kamaya Sales Dept, if you need to confirm Inrush current endurance, Anti-pulce performance etc.
We can provide Application Guide for FMC16 selection.
Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Certified UL, c-UL. File No.: E176847

Dimensions

Current value is marked on the cover coating. Please refer to Ratings table as below.

Unit: mm

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FMC10	1005	0402	1.0±0.05	0.5±0.05	0.38±0.05	0.2±0.1	0.25±0.10	0.6mg
FMC16	1608	0603	1.6±0.1	0.8 +0.15 -0.05	0.45±0.10	0.3±0.15	0.3 ±0.1	2mg

*Values for reference

●Ratings/Option Code: AB (Fast-Acting type)

naum	igs/Opt	ion Code			ig type)					
S	ize	Style	Rated	Current	Internal Resistance	Mark	Interrupting Rating	Flectrical Ch	aracteristics	Working Temperature Range
Metric	Inch	Otyle	Code	Α	m ohm max.	IVICIN	interrupting riating	Liectrical Of	iai acteristics	℃
			501	0.5	240	F				
			751	0.75	140	Α				
			102	1.0	95	L				
1005	0402	FMC10	132	1.25	73	M	24Vd.c. 35A			
1005	0402	1 1010 10	152	1.5	60	Н	24Va.c. 00A			
			202	2.0	41	S				
			252	2.5	32	Т		Rated Current	Opening time	
			302	3.0	25	R		×100%	4h Min.	
			501	0.5	260	F		×200%	5s Max.	-55~+125
			751	0.75	140	Α				00 1120
			102	1.0	110	L		×300%	0.2s Max.	
			132	1.25	80	M				
1000	0000	EN 1010	152	1.5	65	Н	001/1 054			
1608	0603	FMC16	202	2.0	45	S	32Vd.c. 35A			
			252	2.5	32	Т				
			302	3.0	26	R				
			402	4.0	18	X				
			502	5.0	14	Υ				

■ Ratings/Ontion Code · AH (Fast-Acting type)

S	ize	Style	Rated	Current	Internal Resistance	Mark	Interrupting Rating	Electrical CI	naracteristics	Working Temperature Range	
Metric	Inch	Style	Code A		m ohm max.	m ohm max.		Electrical Ci	laracteristics	°C	
			501	0.5	400	HF					
			631	0.63	300	HI					
			751	0.75	210	HA					
			801	0.8	180	HK					
			102	1.0	115	HL		D-4I 0	0		
			132	1.25	90	HM		Rated Current	Opening time		
1000	0000	FMC16	152	1.5	70	HH	32Vd.c. 35A	×100%	4h Min.	-55~+125	
1608	0603	FIVICIO	162	1.6	60	HN	32V0.C. 35A	×200%	5s Max.	-55° ° + 125	
			202	2.0	50	HS		×300%	0.2s Max.		
			252	2.5	37	HT		× 300%	0.25 Max.		
			302	3.0	28	HR					
			322	3.15	26	HU					
			402	4.0	18	HX					
			502	5.0	14	HY					

FMC

Option Code : AB, WB / Low Ohm & Fast Acting

Option Code: AH, WH / In-rush Withstand

Ratings/Option Code : WB (Fast-Acting type)

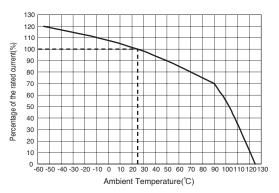
S	ize	Style	Rated	Current	Internal Resistance	Mark	Interrupting Rating	Electrical Ch	naracteristics	Working Temperature Range
Metric	Inch	Style	Code	Α	m ohm max.	IVIAIK	interrupting nating	Liectifical Ci	iaracieristics	°C
			501	0.5	260	F				
			751	0.75	140	Α				
			102	1.0	110	L		Rated Current	Onening time	
			132	1.25	80	M			<u> </u>	
1608	0603	FMC16	152	1.5	65	Н	32Vd.c. 35A	×100%	4h Min.	-55~+125
1000	0003	1 1010 10	202	2.0	45	S	52 va.c. 55A	×200%	5s Max.	33 1123
			252	2.5	32	Т		×300%	0.2s Max.	
			302	3.0	26	R		7.00070	0.20	
			402	4.0	18	Х	1			
			502	5.0	14	Υ				

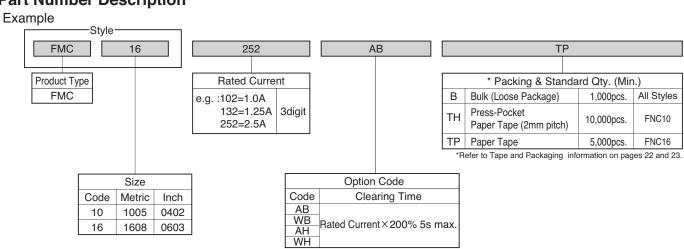
Ratings/Option Code : WH (Fast-Acting type)

S	ize	Style	Rated	Current	Internal Resistance	Mark	Interrupting Rating	Flootrical CI	haracteristics	Working Temperature Range
Metric	Inch	Style	Code	Α	m ohm max.	IVIAIK	interrupting nating	Electrical Ci	naraciensiics	€
			501	0.5	400	○F				
			631	0.63	300	OI				
			751	0.75	210	OA				
			801	0.8	180	○ĸ				
			102	1.0	115	OL		Rated Current	Opening time	
			132	1.25	90	OM				
1608	0603	FMC16	152	1.5	70	○н	32Vd.c. 35A	×100%	4h Min.	-55~+125
1000	0000	1 101010	162	1.6	60	\bigcirc N	02 v a.o. 00/1	×200%	5s Max.	33 1 123
			202	2.0	50	○s		×300%	0.2s Max.	
			252	2.5	37	\bigcirc T		7,000	0.20	
			302	3.0	28	○R				
			322	3.15	26	\bigcirc U				
			402	4.0	18	○x				
			502	5.0	14	○Y				

Recommended Derating for Rated Current

·Nominal Derating


Nominal Derating ≤ 75% of Rated Current


·Temperature Derating

Please refer to the following graph regarding the current derating value for ambient temperature.

Ex.) If FMC16 102AB (Rated Current 1.0A) is used under ambient temperature 70°C, Kamaya recommends, less than the current value derated as below,

Rated Current : 1.0A× (Nominal Derating : 75%×Temperature Derating : 80%) = 0.6A

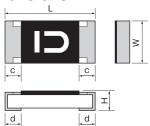
Halogen Free

Antimony Free

Pb Free

Suitable for over-current protection of the circuit of miniature portable equipment.

Low internal resistance compared with FCC10AB series for low power consumption and voltage dropping. e.g.) FCCR10 201AB : 1100m Ω Typ FCC10 201AB(In-line product) : 1850m Ω Typ FCCR16 401AB 358m Ω Typ 590m Ω Typ FCC16 401AB(In-line product)


Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Certified UL, c-UL. File No.: E176847

Unit · mm

Dimensions

Current value is marked on the cover coating Please refer to Ratings table as below

								OTHE . ITHII
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
FCCR10	1005	0402	1.0±0.05	0.5±0.05	0.4 ±0.05	0.2±0.1	0.25±0.10	0.8mg
FCCR16	1608	0603	1.6±0.1	0.8 ^{+ 0.15} -0.05	0.45±0.10	0.3±0.15	0.3 ±0.1	2mg

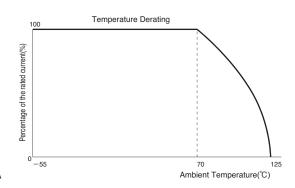
*Values for reference

•Ratings/Option Code : AB (Fast-Acting type)

S	ize	Style	Rated	Current	Internal Resistance	Mark	Interrupting Rating	Time / Current Characteristics	Working Temperature Range
Metric	Inch	Style	Code	Α	m ohm max.	IVIAIK	interrupting hatting	Time / Current Characteristics	°C
			151	0.15	1850	Λ			
			201	0.2	1250	Z			
1005	0402	FCCR10	251	0.25	880	С	24Vd.c. 35A		
1005	0402	1 001110	321	0.315	600	D	24 VU.C. 33A		
			401	0.4	400	E	1		
			501	0.5	300	F			
			401	0.4	450	EB			
			501	0.5	300	FB	1	Rated Current × 200%	
			631	0.63	220	IB		Opening time 5s Max.	$-55 \sim +125$
l			751	0.75	190	AB	1	Opening time 33 Max.	
			801	0.8	165	KB	1		
1608	0603	FCCR16	102	1.0	130	LB	50Vd.c. 50A		
l			132	1.25	110	MB	1		
			152	1.5	90	HB	1		
l			162	1.6	75	NB	1		
l			202	2.0	65	SB	1		
l			252	2.5	40	TB	1		

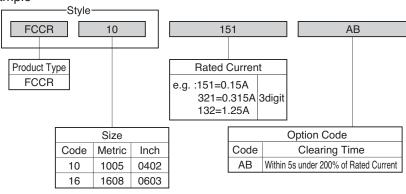
Recommended Derating for Rated Current

·Nominal Derating


Nominal Derating ≤ 75% of Rated Current

·Temperature Derating

Please refer to the following graph regarding the current derating value for ambient temperature.


Ex.) If FCCR10 501AB (Rated Current:0.5A) is used under ambient temperature 70°C, Kamaya recommends, less than the current value derated as below,

Rated Current : $0.5A \times (Nominal Derating : 75\% \times Temperature Derating : 100\%) = 0.375A$

Part Number Description

PA									
	* Packing & Standard	Qty. (Min.)							
В	Bulk (Loose Package)	1,000pcs.	All Styles						
PA	Press-Pocket Paper Tape(2mm pitch)	10,000pcs.	FCCR10						
TP	Paper Tape	5,000pcs	FCCR16						

Refer to Tape and Packaging information on pages 22 and 23.

SBF32 **Slow Blow**

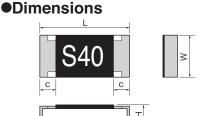
Halogen Free

Antimony Free

Pb Free

●Features

d


"Slow Blow" ensure high anti pulse performance.

Please contact Kamaya Sales Dept, if you need to confirm Inrush current endurance, Anti-pulce performance etc. We can provide Application Guide for SBF32 selection.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Certified UL, c-UL. File No. : E176847

Unit: mm

Current value is marked on the cover coating

Please refer to Ratings table as below

Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
SBF32	3216	1206	3.2±0.2	1.6±0.15	0.65±0.10	0.5±0.25	0.5±0.25	10mg

Values for reference

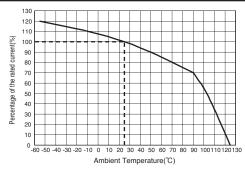
Opton Code:AS(Slow Blow type)

d

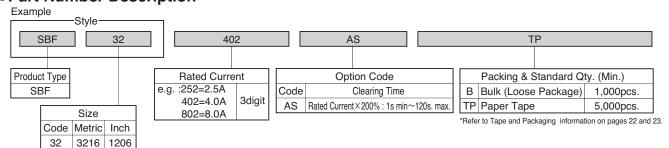
S	ize	Style	Rated (Current	Internal Resistance	Mark	Interrupting Rating	Electrical	Characte	rictico	Working Temperature Range	
Metric	Inch	Style	Code	Α	m ohm typ.	IVIAIN	interrupting hatting	Electrical	Characte	HISHUS	℃	
			102	1.0	130	S10						
			132	1.25	94	S13	63Vd.c. 50A		Openir	ng time		
			152	1.5	68	S15	05 va.c. 50A	Rated Current	Min.	Max.		
			202	2.0	40	S20			41-			
			252	2.5	30	S25		×100%	4h			
3216	1206	SBF32	302	3.0	24	S30		×200%	1s	120s	-55~+125	
			402	4.0	15	S40				1200		
			502	5.0	12	S50	32Vd.c. 50A	×300%	0.02s	3.0s		
			602	6.0	10	S60		× 0000/	0.00150	0.050		
1			702	7.0	7	S70		×800%	0.0015s	0.05s		
			802	8.0	6	S80						

Recommended Derating for Rated Current

·Nominal Derating


Nominal Derating ≤ 75% of Rated Current

·Temperature Derating


Please refer to the following graph regarding the current derating value for ambient temperature.

Ex.) If SBF32 102AS (Rated Current 1.0A) is used under ambient temperature 70°C, Kamaya recommends, less than the current value derated as below.

Rated Current : 1.0A×(Nominal Derating : 75%×Temperature Derating : 80%) = 0.6A

Part Number Description

Support of Chip Fuse Selection

We would like to support the customer to find the appropriate Kamaya chip fuse it the following condittions of usage are provided. Please contact kamaya Sales Dept for details.

- · The item you would like to check.
- · Circuit Voltage:Max voltage value of circuit mounting fuses.
- · Steady-State Current: Current value flown fuses on normal condition.
- · Ambient Temperature:Temperature around fuses.
- · Wave form (In-rush Current): It rapidly flows on circuit when power supply is turned on.
- · We can provide Application Guide for Fuse selection.

SPC10

Halogen Free

Antimony Free

Pb Free

●Features

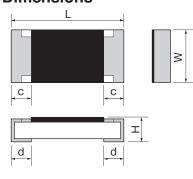
Low capacitance 0402inch: 0.1pF Max.

Suitable for ESD protection of High Speed data lines. High ESD Withstand, IEC61000-4-2 Lv4 8kV Contact Discharge

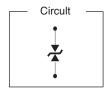
- [Major application]

PC, PC related equipment and peripherals

Mobile Phone, PDA, Small portable devices


Digital Video Camera, Digital Still Camera

LCD TV, PDP TV, STB


Game equipment etc.

Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

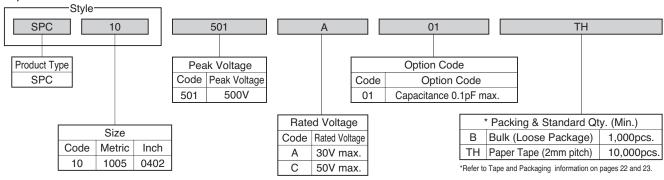
								Unit : mm
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
SPC10	1005	0402	1.0±0.05	0.5±0.05	0.35±0.05	0.2±0.1	0.25±0.10	0.6mg

Ratings

D 1 1 1	Size	Capacitance ^{Note.1}			ESD Characteristics	Note.4 Rated	J	Note.6 Category Temperature		
Part Number	Metric (Inch)	pF	Peak V Code	oltage ^{Note.2}	Clamp Voltage ^{Note.3} V	ESD pulse withstand Pulses	votage V	current μ Α	Range °C	
SPC10	1005 (0402)	0.1 Max.	501	500 Max.	100 Max.	100 Min.	30 Max. 50 Max.	1 Max.	-55~+125	

Note1. Capacitance: Measured at 25°C, 1MHz, 1V rms.

Note2. Peak voltage: Measured at IEC61000-4-2 8kV Contact Discharge.


Note3. Clamp voltage: Measured at IEC61000-4-2 8kV Contact Discharge, at 30ns.

Note4. Rated Voltage: The value of voltage that is applicable to each terminal of ESD suppressor without operation of suppressor.

Note5. Leakage Current: The value of current that ESD suppressor is impressed at rated voltage.

Note6. Category Temperature Range: Working Temperature Range of ESD suppressor.

HSPC16

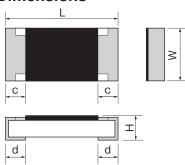
Halogen Free

Antimony Free

Pb Free

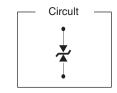
●Features

High ESD protection performance(15kV) for automotive (Tight ESD spec requirement)


IEC61000-4-2 Air Discharge: ±15kV

[Major application]
Car audio, Car Navigation System etc.

Video Camera, DSC, Desk top-PC. Note PC etc.


Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

								Unit : mm
Style	Metric	Inch	L	W	Н	С	d	*Unit weight/pc.
HSPC16	1608	0603	1.6±0.1	0.8 ^{+0.15} _{-0.05}	0.5±0.10	0.3±0.1	0.3±0.1	2mg

*Values for reference

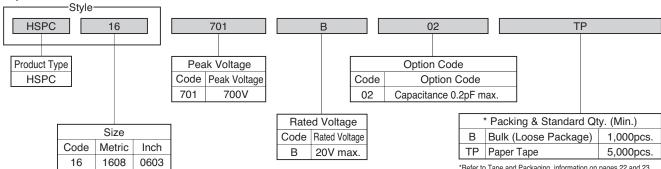
Ratings

Style	Style Metric ' "E	Capacitance ^{Note.1}			ESD Characteristics	Note.4 Rated	Note.5 Leakage	Note.6 Category Temperature	
Style	Metric (Inch)	pF	Peak V Code	oltage ^{Note.2}	Clamp Voltage ^{Note.3}	ESD pulse withstand Pulses	votage V	current μA	Range °C
HSPC16	1608 (0603)	0.2 Max.	701	700 Max.	100 Max.	100 Min.	20 Max.	1 Max.	-55~+125

Note1. Capacitance : Measured at 25°C, 1MHz, 1V rms.

Note2. Peak voltage : Measured at IEC61000-4-2 15kV Air Discharge.

Note3. Clamp voltage : Measured at IEC61000-4-2 15kV Air Discharge, at 30ns.

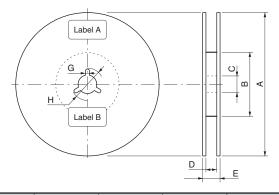

Note4. Rated Voltage: The value of voltage that is applicable to each terminal of ESD suppressor without operation of suppressor.

Note5. Leakage Current: The value of current that ESD suppressor is impressed at rated voltage.

Note6. Category Temperature Range : Working Temperature Range of ESD suppressor.

Part Number Description

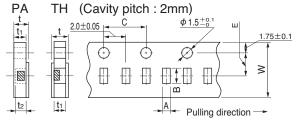
Example



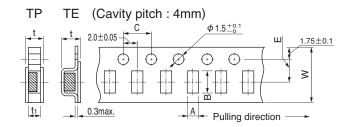
*Refer to Tape and Packaging information on pages 22 and 23.

Packaging for Surface Mount Devices

Reel Dimensions



Unit : mm


	Co	ode	A	В	С	D	E	G	Н
Diagtic Dool	PA,TH,TP,TE	Shoot molding				Q +1.0	11.4±1.0	2±0.5	
Plastic Reel (EIAJ ET-7200B)	(8 mm width)	Voorum molding	ϕ 180 $^{0}_{-1.5}$	ϕ 60 $_{0}^{+1}$	φ13±0.2	9 0	13.0±1.0	2±0.5	ϕ 21±0.8
(LIA0 L1-7200B)	TE (12 mm width)	Vacuum molding				13 +1.0	17.0±1.0	_	

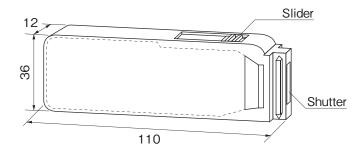
^{*}Dimension A : Please contact KAMAYA for plastic reels of ϕ 250mm and ϕ 330mm.

● Tape Dimensions (Unit : mm)

*Please contact Kamaya sales department for 1mm pitch cavity taping.

Metric	Inch	Style	Code	А	В	С	W	Е	t ₁	t ₂	t
0402	01005	RMC1/32, RGC1/32		0.24±0.03	0.45±0.03	4.0±0.05			0.31±0.03	0.15±0.02	0.36±0.03
0603	0201	RMC1/20, RGC1/20, RCC06, RNC06	PA	0.37±0.05	0.67±0.05	401005			0.42±0.03	0.27±0.02	0.45±0.05
		FCC10, FHC10, FCCR10		0.65±0.10	1.15±0.10	4.0±0.05			0.6 ±0.05	0.5 ±0.05	0.7 max.
1005	0402	RMC1/16S, RGC1/16S, RLC10, RCC10, FCC10(LB), FMC10, SPC10	TH	0.65 +0.05 -0.10	1.15 +0.05 -0.10				0.4 ±0.05	-	0.5 max.
		RMC1/16		1.15±0.15	1.9 ±0.2				0.6 ±0.1	-	0.8 max.
1608	0603	RMC1/16, RGC1/16, FCR1/16, RVC16 RLC16, RHC16, RCC16 , RLP16, FCC16 FHC16, FMC16, FRC16, HSPC16, FCCR16		1.15±0.15	1.9 ±0.2		8.0±0.2	0.5.1.0.05	0.6 ±0.1	_	0.8 max.
2012	0805	RMC1/10, RGC1/10, FCR1/10, RNC20 RVC20, RPC20, RLC20, RHC20, LTC1/10 FCC20, FHC20, FRC20, RCC20	TP	1.65±0.15	2.5 ±0.2			3.5±0.05	0.8 ±0.1	_	
		RLP20	IP			40104			0.6 ±0.1		1.0 max.
3216	1206	RMC1/8, RGC1/8, FCR1/8, RNC32 RVC32, RPC32, RLC32, LTC1/8 FCC32, FHC32, SBF32, FRC32, RCC32		2.0 ±0.15	3.6 ±0.2	4.0±0.1			0.8 ±0.1	_	1.0 Illax.
		RLP32							0.6 ±0.1		
3225	1210	RMC1/4, FCR1/4, RPC35, RLC35		2.85 ± 0.20	3.5 ±0.2		8.0±0.3		-	-	1.0 ±0.2
5025	2010	RMC1/2, FCR1/2, RVC50, RPC50 RZC50, RLC50	TE	3.1 ±0.2	5.5 ±0.2		10 100	5 5 1 0 05	-	-	4.4 10.45
6332	2512	RMC1, FCR1, RVC63, RPC63, RZC63 RLC63, RLP63, MLP63		3.6 ±0.2	6.9 ±0.2		12 ±0.3	5.5±0.05	_	-	1.1 ±0.15
		RAC101A		4 F +0.05	4 4 5 +0.05				0.4 +0.05		0.55 max.
	in Notworks	RAC102D	TH	1.15 +0.05 -0.10	1.15 +0.05 -0.10		00400		0.4 +0.05 -0.10	_	0.E mov
		RAC104D		1.2 ±0.1	2.2 ±0.1	4.0±0.1	8.0±0.2	3.5±0.05	0.4 ±0.1	-	0.5 max.
Chilp Alle	iluai015	RAC164D	TP	1.9 ±0.15	3.6 ±0.2				00 +01	_	0.0
		RAC168D	I IP	1.9 ±0.15	4.1 ±0.15		8.0±0.3		0.6 ±0.1	_	0.8 max.

PACKAGING FOR SURFACE MOUNT DEVICES


●Tape Dimensions

Unit: mm

Metric	Inch	Style	Code	Α	В	С	W	Е	t ₁	t ₂	t
1005	0402	RMNW10, RMAW10, RNC10	TH	0.7 ± 0.1	1.2±0.1				-	_	0.4 ± 0.05
1608	0603	RMNW16, RMAW16, RNC16		1.1 ±0.2	1.9±0.2		8.0±0.3	3.5±0.2	_	_	0.65 ± 0.05
2012	0805	RMNW20, RMAW20	TP	1.65±0.20	2.4±0.2	4.0±0.1	0.0 ± 0.3	3.5 ± 0.2	_	_	1.0 Max.
3216	1206	RMNW32, RMAW32		2.0 ± 0.2	3.6±0.2				_	_	1.0 Max
5025	2010	RMNW50	TE	2.8 ± 0.2	5.5±0.2		12 ±0.3	5.5±0.1	_	_	1.2 Max.

*Value for reference

●Bulk Case (Code: BA) (Unit: mm)

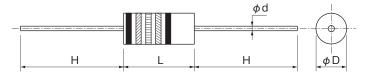
Standard Packaging Quantities

Si	ze	Bulk case (pcs./case)				
Metric	Inch	Buik case (pcs./case)				
1608	0603	25,000				
2012	0805	10,000				
3216	1206	5,000				

Standard Packaging Quantities (Minimum Units)

					Tape & Red	el		Bulk
						Outer Cartor	า	
Metric	Inch	Style	Code	M. P. Q. (pcs./reel)	Reel Q' ty (pcs.)	Gross Weight (kg)	Measurement (m³)	Q' ty (pcs.)
0402	01005	RMC1/32, RGC1/32		20,000		8.8		
0603	0201	RMC1/20, RGC1/20, RCC06, RNC06	PA	15,000		7.8		
		FCC10, FHC10, FCCR10						
1005	0402	RMC1/16S, RGC1/16S, RLC10, RCC10 FMC10, SPC10, RNC10, RMNW10, RMAW10	TH 10,000	6.0				
		RMC1/16				8.3		
1608	0603	RMC1/16, RGC1/16, FCR1/16 RVC16, RLC16, RHC16, RCC16, RLP16 FCC16, FHC16, FMC16, FRC16, HSPC16 FCCR16, RNC16, RMNW16, RMAW16			7.			
2012	0805	RMC1/10, RGC1/10, FCR1/10, RLP20 RNC20, RVC20, RPC20, RLC20, RHC20 LTC1/10, FCC20, FHC20, FRC20, RCC20 RMNW20, RMAW20	TP	TP 5,000		8.4		
3216	1206	RMC1/8, RGC1/8, FCR1/8RNC32 RVC32, RPC32, RLC32, LTC1/8, FRC32 RCC32, RMNW32, RMAW32				8.8 0.027	1,000*	
		RLP32, FCC32, FHC32, SBF32				10.0		
3225	1210	RMC1/4, FCR1/4, RPC35, RLC35				7.7		
5025	2010	RMC1/2, FCR1/2, RVC50, RPC50 RZC50, RLC50, RMNW50	TE	4,000		8.0		
6332	2512	RMC1, FCR1, RVC63, RPC63, RZC63 RLC63	IE	4,000	40	10.4		
		RLP63, MLP63				12.0		
		RAC102D, RAC101A	TH	10,000		6.0		
Chip Net		RAC104D	ΙΠ	10,000		6.3		
Chip Atte	nuators	RAC164D	TD	5,000	50	7.7		
		RAC168D	TP	5,000		8.6		5,000

^{*}Please contact Kamaya Sales department about bulk package of RLP16, RLP20, RLP32, RLP63, MLP63.


RC1/2U

● Features UL recognized component(UL1676) (File No.E151897).Reduce UL or CSA approval and maintenance cost. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

UL recognized component (UL1676) (File No.E151897)

Dimensions

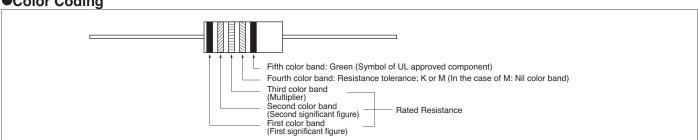
					Unit : mm
Style	L	D	Н	d	*Unit weight/pc.
RC1/2U	9.5 +0.8 -0.7	3.6±0.2	28±3	$0.7^{+0.07}_{-0.05}$	422mg

*Value for reference

Ratings

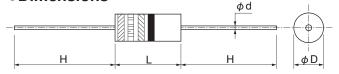
Style	Rated Dissipation at 70°C W	Rated Voltage V	Rated Resistance Range	Tolerance on Rated Resistance and Perferred Number Series for Resistors.	Specified Line Voltage	Isolation Voltage V	Category Temperature Range °C
BC1/2U	0.5	350	1M ohm~10M ohm	K(±10%) E12	250Va.c. max.	500	-55∼+125
				M(±20%) E6	125Va.c. max.		

Part Number Description


Example

*Refer to Tape and Packaging information on pages 25.

Note: The name of this, product is granted as Conductive Path, but UL 1676 and the requirements as Discharge Path shown in CSA22, 2 No,1-94 are satisfied, but the products performance does not cover all the requirements as Conductive Path.



RC

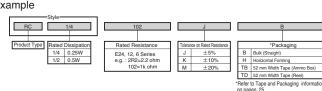
Features

Improved pulse endurance characteristics compared to carbon-film devices. Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

Dimensions

					Unit : mm
Style	L	D	Н	d	*Unit weight/pc.
RC1/4	6.3 ±0.7	2.4±0.1	30±3	0.6 ±0.05	222mg
RC1/2	9.5 +0.8 -0.7	3.6±0.2	28±3	0.7 +0.07 -0.05	422mg

*Values for reference

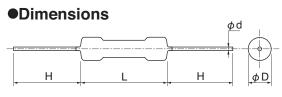

Ratings

Style	Rated Dissipation at 70°C	Limiting Element Voltage	Rated Resistance Range	Temperature Coefficient of Resistance % Rated Resistance Per		DR .		Tolerance on Rated Resistance and Perferred Number Series for Resistors	Isolation Voltage	Category Temperature Range °C
	W	V	naliye	at -55°C	at +125°C	Range	relielled wallider deles for nesseurs	V	℃	
RC1/4	0.25	250	1 ohm~5.6M ohm	+10 ~0	0~-6	1 ohm ~ 1k ohm 1.1k ohm ~ 10k ohm	J (± 5%) : E24 K (± 10%)	100	55 1405	
RC1/2	0.5	350	1 ohm~22M ohm	+13 ~0 +15 ~0 +20 ~0		11k ohm ~ 100k ohm 110k ohm ~ 1M ohm 1.1M ohm ~ 22M ohm	: E12 M(± 20%) : E6	500	-55~+125	

Note1. Rated Voltage = \((Rated Dissipation) \times (Rated Resistance). (d.c. or a.c. r.m.s. Voltage)
Note2. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value
Note3. Ortical Resistance Value is the resistance value at which the rated voltage is equal to the limiting element voltage.

Part Number Description

Example


● Storage Temperature 20±15°C, Humidity 60%R.H. Max, Recommendation Storing Term 6 months after shipped from factory.

RH

● Features Most suitable resistor for high-tension circuits in which high precision is required for example, the physical and chemical measurement equipment, X-ray apparatus, electron microscope, and etc.

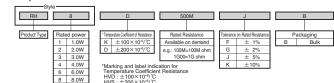
Please refer to Specification (Reference) at the Website to confirm the specification for more detail.

*Dimension "L" should be measured between both side of D/2.

Note. Please contact KAMAYA for the details of marking.

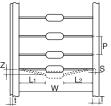
Ratings

Style	Rated Dissipation W	Limiting Element Voltage kV	Maximum Overload Voltage kV	Pulse Voltage kV	Combination of Temperature Coefficient of Rated Resistance Range M ohm	Resistance and rated Resistance Range Temperature Coefficient of Resistance 10 ⁴ /°C	Tolerance on Rated Resistance
RH 1	1.0	1.5	4	4			
RH 2	2.0	5	12.5	7.5			F(± 1%)
RH 3	3.0	10	25	15	1 ≤ R ≤ 500	±100	G(± 2%)
RH 4	4.0	15	30	20	500 < R ≤ 5,000	±200	J (± 5%)
RH 6	6.0	20	40	30			K (±10%)
RH 8	8.0	30	60	40			

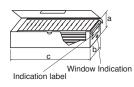

Note1. Rated Voltage= \((\text{Fated Dissipation} \) \times \((\text{Rated Resistance} \), (d.c. or a.c. r.m.s. Voltage) \\
Note2. Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critic values are the resistance value is equal to or higher than the critic values are the resistance value is the resistance value at which the rated voltage is equal to the limiting element voltage.

					Unit : mm	
Style	L	D	Н	d	*Unit Weight/pc.	
RH 1	14.5±1.0	4.0±1.0	38±3	0.8	950mg	
RH 2	26.5±1.0	5.0±1.0	38±3	1.0	1,950mg	
RH 3	39.0±2.0	5.0±1.0	38±3	1.0	2,410mg	
RH 4	52.0±2.0	9.0±1.0	38±3	1.0	6,880mg	
RH 6	77.0±2.0	9.0±1.0	38±3	1.0	9,290mg	
RH 8	97.0±2.0	9.0±1.0	38±3	1.0	11.46g	

*Values for reference


●Part Number Description

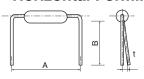
Example


Packaging for Leaded Resistors

●Tape


						-	Unit : mm
Style	W	L1-L2	Т	t	Р	Z	S
RC1/4 RC1/2 RC1/2U	52.4 ^{+1.6} _{-1.4}	1.0max.	6.0±0.5	0.5max.	5.08±0.38	1.0max.	3.2min.

●Ammo Box


				Unit : mm
Style	Code	а	b	С
RC1/4	ТВ	60±5		275±5
RC1/2 RC1/2U	52mm Width Tape	65±5	75±5	455±5

●Tape & Reel (Code: TD)

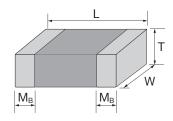
							Unit	: mm
Style	Code	Α	*A'	В	C ₁	C2	d	*Y
RC1/4 RC1/2 RC1/2U		260±5	280	75±5	60.4±1	78±1	14.5±0.5	3
						*\/al	ue for ref	oronoo

•Horizontal Forming (Code : H)

				Offit . Itilit
Style	Code	Α	В	t
RC1/4	H60	10.0±0.5		1.5max.
RC1/4	H62	12.5±0.5	5.0±0.5	1.Jillax.
RC1/2 RC1/2U	н	15.0±0.5		1.8max.

	Laber indication																	
ı	Tape & Reel						Am	mo Box			Bulk Packaging							
ı	Style	QU. /		011. /		Ou	ter Carto	n	Width of	Olty /	Out	ter Carto	n	M.P.Q.	Q'ty /	Ou	ter Carto	'n
	Style	Q'ty / Reel (pcs.)	Reel Size (mm)	Q'ty / Carton (pcs.)	Gross Weight (kg)	Measure- ment (m³)	Taping (mm)	Q'ty / Box (pcs.)	Q'ty / Carton (pcs.)	Gross Weight (kg)	Measure- ment (m³)	(Plastic Bag pcs.)	Inner Carton (pcs.)	Q'ty / Carton (pcs.)	Gross Weight (kg)	Measure- ment (m³)		
	RC1/2U	3,000	260	24,000	13	0.04	52	2,000	30,000	16	0.05	500 (100×5)	5,000	30,000	13	0.04		
	RC1/2	3,000	260	24,000	13	0.04	52	2,000	30,000	16	0.05	500 (100×5)	5,000	30,000	13	0.04		
	RC1/4	5,000	260	40,000	12	0.04	52	2,000	30,000	10	0.03	1000 (200×5)	10,000	50,000	13	0.04		

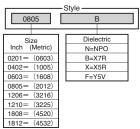
Multilayer Ceramic Capacitor


Please see Catalog of Walsin Technology Corporation. (Website: http://www.passivecomponent.com/) for detail information.

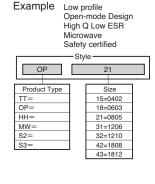
- Features 1. General purpose, Board of PC etc. 2. Full support by Japanese Quality Assurance team.

Unit: mm

Dimensions


Metric	Inch	L	W	T/Symbol			M _B	Series
1005	0402	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	Ν		0.25±0.05/-0.1	General Purpose, High Capacitance, MW, HH
1608	0603	1.6 ±0.1	0.8 ±0.1	0.8 ±0.07	S		0.4 ±0.15	General Purpose, High Capacitance, MW, HH
1000	0003	1.6+0.15/-0.1	0.8+0.15/-0.1	0.8+0.15/-0.1	Х		0.4 ±0.15	General Purpose, High Capacitance
				0.6 ±0.1	Α		0.5 ±0.2	General Purpose, High Voltage
				0.8 ±0.1	В		0.5 ±0.2	General Purpose, High Capacitance, High Voltage
2012	0805	2.0 ±0.15	1.25±0.1	0.0 ±0.1	_		0.4 ±0.2	OP
2012	0805	2.0 ±0.13		1.25±0.1	D	#	0.5 ±0.2	General Purpose, High Capacitance, High Voltage
					-		0.4 ±0.2	OP
			1.25±0.2	0.95max.	Τ		0.5 ±0.2	П
4000	0040	2.0 ±0.2		1.25±0.2	1	#		High Capacitance
1632	0612	3.2 ±0.15	1.6 ±0.15	0.8 ±0.1	В		0.13max.	Low Inductance
I				0.8 ±0.1	В		0.6 ±0.2 0.5 ±0.2	General Purpose, High Voltage OP
I				0.05=====	-	#		TT
		3.2 ±0.15	1.6 ±0.15	0.95max.		#	0.6 ±0.2	General Purpose, High Capacitance, High Voltage
				0.95±0.1	С		0.6 ±0.2 0.5 ±0.2	OP
l							0.5 ±0.2 0.6 ±0.2	General Purpose
3216	1206			1.15±0.15	J	#		High Capacitance
3210	1200	3.2 ± 0.2	1.6 ±0.2	1.25max.	J	#	0.6 ±0.2	TT
I							0.6 ±0.2	General Purpose, High Capacitance, High Voltage
			1.6 ±0.15	1.25±0.1	D	#	0.5 ±0.2	OP
		3.2 ±0.15	40.100	40 100	_	,,	0.6 ±0.2	General Purpose, High Capacitance, High Voltage
l			1.6 ±0.2	1.6 ±0.2	G	#	0.5 ±0.2	OP
l		3.2+0.3/-0.1	1.6+0.3/-0.1	1.6+0.3/-0.1	Р	#	0.6 ±0.2	General Purpose, High Capacitance
				0.95max.	Т	#	0.75±0.25	TT
				0.95±0.1	С	#	0.75±0.25	General Purpose, High Voltage
		3.2 ± 0.3	2.5 ±0.2	0.95±0.1	0	#	0.5 ±0.25	OP
3225	1210			1.25±0.1	D	#	0.75±0.25	General Purpose, High Voltage
0223	1210			1.25 ± 0.1	U	#	0.5 ±0.25	OP
I				1.6 ±0.2	G	#	0.75±0.25	General Purpose, High Voltage
		3.2 ± 0.4	2.5 ±0.3		_		0.5 ±0.25	OP
				2.5 ±0.3	M	#	0.75±0.25	High Voltage
i l				1.25±0.1	D	#	0.5 ±0.25	S2, S3
4520	1808	4.5 ±0.4	2.03±0.25	1120 2011	_		0.75±0.25	High Voltage
10				2.0 ±0.2	k	#	0.5 ±0.25	S2, S3
					1		0.75±0.25	High Voltage
				1.25±0.1	Ь	#	0.75±0.25	General Purpose, S2, S3
4532	1812	4.5 ±0.4	3.2 ±0.3		ř	-	0.6 ±0.25	
				2.0 ± 0.2	K	#	0.75±0.25 0.6 ±0.25	General Purpose, S2, S3 OP
			l .	1	1		U.0 ±U.25	UP

Characteristic


Application	Series	Dielectric		Size		Rated Voltage	Capacitance
General Purpose	General Purpose	NPO, X7R, Y5V	0402(1005) 0603(1608)	0805(2012) 1206(3216)	1210(3225) 1812(4532)	16V, 25V, 50V, 100V	0.5pF∼1uF
General Fulpose	High Capacitance	X7R, X5R, Y5V	0402(1005) 0603(1608)	0805(2012) 1206(3216)	1210(3225) 1812(4532)	6.3V, 10V, 16V, 25V, 50V	1uF~100uF
Safety and Power supply control	Middle & High Voltage	NPO, X7R, Y5V	0805(2012) 1206(3216)	1210(3225) 1812(4532)		200V, 250V, 500V, 630V 1kV, 1.5kV, 2kV, 3kV	0.5pF∼0.22uF

Part Number Description

104	K	500	С	Т
			$\overline{}$	
Capacitance	Tolerance	Rated Voltage	Electrode	Package
R47=0.47pF	$A = \pm 0.05pF$	6R3=6.3 Vdc	L = Ag/Ni/Sn	B= Bulk
0R5=0.5pF	$B = \pm 0.1pF$	100=10 Vdc	C= Cu/Ni/Sn	C= Bulk case
1R0=1pF	$C = \pm 0.25pF$	160=16 Vdc		T= 7Inch width
100=10pF	D = ±0.5pF	250=25 Vdc		
101=100pF	F = ±1%	500=50 Vdc		
102=1000pF	G = ±2%	101=100 Vdc		
103=0.01uF	J = ±5%	201=200 Vdc		
104=0.1uF	K = ±10%	251=250 Vdc		
105=1uF	$M = \pm 20\%$	501=500 Vdc		
106=10uF	Z = -20to +80%	631=630 Vdc		
107=100uF		102=1000 Vdc		

#: Reflow soldering process only.

202=2000 Vdc

Film Capacitors

- Dipped metallized film capacitors
- CR Units

Film Capacitors Summary

Sum	mary	Style	Series Code	Features	Rated Voltage	Capacitance (µF)	Temp. Range (°C)
			FPB NEW	· Small	250VDC 450VDC 630VDC 1250VDC	0.47~10 0.22~4.7 0.068~2.2 0.001~0.22	-40~ +85 (+105)
	Olevedend	24.	MDX	Standard	250VDC 450VDC 630VDC	0.01~10 0.01~4.7 0.01~2.2	-40~ +85 (+105)
	Standard	4.0	MDS	Standard	100VDC 250VDC 400VDC 630VDC	0.56~10 0.18~10 0.039~4.7 0.01~2.2	-40~ +85 (+105)
General use		EM.	MDD	· Lead pitch 5mm,7.5mm	50VDC 63VDC 100VDC 250VDC	0.1~2.2 0.1~1.0 0.047~0.47 0.01~0.15	-40~ +85 (+105)
General use	PFC circuit in power	270	FPA	Small High temperature proof	450VDC 550VDC	0.47~2.2	-40~ +85 (+110)
		270	FPS3 FPS	· Low Noise	450VDC	0.47~2.2	-40~+85 (+110) -40~+85 (+105)
	Large capacitance	To the Miles	MDL	Miniature and Large capacitance For high frequency and high ripple	35VDC 63VDC	4.7~22 10~22	-40~ +85 (+105)
	High voltage	574	MDD	High voltage series For AC and DC	1250VDC (500VAC)	0.0022~0.1	-40~ +85 (+105)
High frequenc	av eirevit vee	Wat	FPD4	· Standard	250VDC 450VDC 630VDC	0.01~10 0.01~3.3 0.01~2.2	−40~ +105
High frequency circuit use		270	FPD5	· Small	450VDC	0.47~2.2	-40∼ +105
Across- the- line use		878	CFD-N	For Japan For noise immunity test	125VAC 250VAC	0.033~4.7 0.01~2.2	-40~ +85 (+105)
Surge absorber C-R units		38	CR	· C-R Unit	125VAC 250VAC	0.1 μF +120 Ω 0.033 μF +120 Ω	−40~ +85
C-R units			CRKH	C-R Unit UL,VDE Safety Standard	275VAC	0.01~0.1 μ F 47, 100, 120 Ω	-40∼ +100

Compliance with RoHS requirement

Our film capacitors (all products in the above list) comply with RoHS requirement.

About Nitsuko product, Please contact as follows.

Nitsuko Electronics Corporation http://www.nitsuko-ele.co.jp/

Development · Sales Department

2031-1, Ogawara, Suzaka-shi, Nagano-ken, Postcode 382-0071

TEL (+81) 26-246-6351 FAX (+81) 26-245-6239 E-Mail: ec@nitsuko-ele.co.jp

SMD Product handling manual

1. Scope

This product handling manual is applied to parts for the surface mounting that KAMAYA ELECTRIC CO., LTD. produce.

2. Storage

Consider the following four points for keeping the environment, the storage method, and the storage period to maintain the qualities of parts below.

- 2.1 Avoid storing in locations where corrosive gas is present (Sea breezes, Cl2, H2S, NH3, SO2, NO2, etc.) or in dusty and moist circumstances. Otherwise, it may result in deterioration of performance and adversely affect the soldering.
- 2.2 Avoid keeping goods in high temperature and direct sunlight. Otherwise, it may cause deformation of packing materials, and adherence of parts on packing materials.
- 2.3 Please enforce First-In & First-Out for the use of parts in consideration of the change in the environmental condition.
- 2.4 Store these products in the following environment.

Temperature: 5 to 35°C Humidity: 25 to 75% Terms of guarantee: 2 years

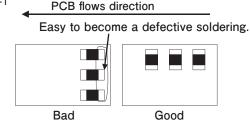
3. Pattern Design

To solder parts on the printed circuit board properly, it is necessary to take a careful attention in design stage.

It is necessary to consider the land pattern position by mounting equipment, method of soldering (flow or reflow), and material of print circuit board. Moreover, it is necessary to consider the position of adhesive and the array of parts at the flow soldering. Refer to Page 30 for recommended land pattern of Kamaya product

- 3.1 Strength of parts might decrease under the condition that the width or the shape of land pattern is too large, or the bend of the substrate occurs when gap of soldering position is generated or there are a lot of solder quantities.
- 3.2 Interval of parts should not narrow too much for the short-circuit prevention.

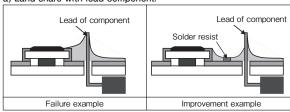
In general, it is safer to open more than 0.5mm from the positioning accuracy of mounting.


3.3 The resistor is a generation of heat source.

The pattern design that opens enough distance is necessary from other generation of heat parts.

Especially, please do enough derating of the rated dissipation for a high voltage circuit after considering the temperature rises of the adjoining generation of heat parts.

3.4 When the flow soldering is executed, soldering differs depending on the direction where the printed circuit board is thrown.


Figure-1

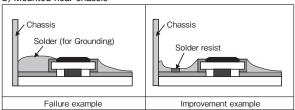
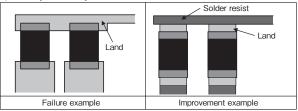
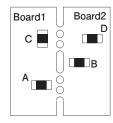

- 3.5 Examples of division of land pattern (Cross-sectional view)
 - a. Land share with lead component.
 - b. Mounted near Chassis.
 - c. Side by side array.

Figure-2


a) Land share with lead component.

b) Mounted near chassis

c) Side by side array



- 3.6 Avoid the component placement to the following places.
 - 1) Near cutting line of print circuit board.
 - 2) Place where print circuit board is distorted and mechanical stress is received easily.

Figure-3

Layout of resistors near the cutting line of print circuit board.

Improper $A \rightarrow B \rightarrow C\&D \rightarrow Proper$

4. Print Circuit Board

Please consider following respects.

4.1 Thermal diffusivity (thermal conductivity)

Thermal diffusivity through the print circuit board is necessary for generation of heat from parts.

Especially, use the print circuit board with high thermal conductivity when the calorific value is large.

4.2 Resistance to soldering heat

Select a heatproof, good substrate to soldering parts. Because it often solders two or more times.

SMD PRODUCT HANDLING MANUAL

4.3 Pull peel strength of land pattern

Consider that the print circuit board corresponding to the land pattern size and sticking strength with the copper foil.

4.4 Bend strength

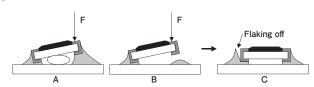
The stress in the electrodes and parts body, when the PCB bends by weight and external stress of parts, causes the joining electrode flaking off and the crack. Consider the bend ability of print circuit board.

5. Adhesive

When an adhesive is applied, the spread should be set corresponding to each part so that there are no overflow into the land or no dropout of the parts.

- 5.1 Strength of adhesive must be strong not to fall and move parts in the mounting process.
- 5.2 Stiffen at the low temperature as much as possible. Do not heat parts as the cure temperature.
- 5.3 Keep without stringy, slumping adhesion, and dewetting that solder can not adhere to parts.
- 5.4 After soldering, there must be no causticity.

6. Mounting


Please consider following to install parts in the printed circuit board.

- 1) Gap of installing position
- 2) Product floating from land pattern
- 3) Mechanical stress to overcoat of parts.
- 6.1 Do not touch with bare-handed in the electrode and wash it well with an organic solvent when the foreign body such as oils and fats adheres.
- 6.2 Mounting trouble of static electricity may occur when you touch or rub the part, packaging materials and the cover tape of the taping especially. When you deal with parts on the worktable, please execute the static electricity prevention measures (like the electrification prevention mat).

7. Soldering

- 7.1 The lead free is recommended in the solder paste. Select appropriate solder paste after executing the evaluations of soldering and strength of bond, etc.
- 7.2 Select flux without the causticity.
- 7.3 The conditions of temperature and time should be well considered in the soldering process so that any warp or twist in the printed circuit board may not grow. Moreover, the electrode might flake off when the substrate is bent after it solders or the high impact is given parts or around it.
- 7.4 In VPS Reflow, preheat well so that the difference of temperature may not big too much between parts and inside of furnace. A big difference of temperature cause drop out of parts.
- 7.5 Do not rub the electrodes of resistor with soldering iron. The electrode may flake off when the iron is pressed on the electrode. Do not raise the temperature of the soldering iron more than necessary when the side electrode of parts is formed with the Ag resin.

Figure-4

- 7.6 The overcoat and the main body may be chipped off when you hold the parts strongly with tweezers.
 - Do not use parts detached from the print circuit board once again.
- 7.7 Please refer to page 31 for our recommended soldering conditions.

8. Cleaning

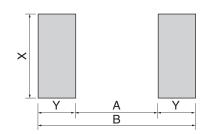
The remaining of the flux on print circuit board with part mounted may cause a bad effect on humidity resistance and corrosion resistance. Please use a rosin flux with low chlorine-containing, or alcoholic and hydrocarbon solvent.

9. Other Notes

- 9.1 The use of the products mentioned in this catalog refers to consumer applications that are available on the open market.
- 9.2 There are cases which high levels of reliability distinctive from consumer applications sold on the open market are necessary for electrical components which are used in equipment that could effect human life or create huge social loss owing to defect in medical equipment, space equipment, nuclear power-related equipment, vehicle mounted equipment, aircraft and other equipment. When you examine the use in the above-mentioned equipment or for uses not mentioned within this catalog, ensure that you consult with our sales department prior to deployment.
- 9.3 As the use of resistors and surface-mounted parts used in all electrical components, especially resistors used in high-voltage circuits and in circuits prescribed for safely regulations, will be greatly affected by the circuit used, the method of mounting, the material, and environmental conditions, ensure that you consult with our sales department prior to deployment when examining the viability of use in characteristic circuits, mounting methods, material and under characteristic environmental conditions,
- 9.4 Thoroughly verify performance and reliability when using under the following characteristic environmental conditions:
 - (1) Use within a liquid environment (Water, oil, liquid chemical, organic solution, etc.)
 - (2) Use in direct sunshine. Outdoors in heavy dew, in dusty environments, or where corrosive gas is present (Sea breezes, Cl₂, H₂S, NH₃, SO₂, NO₂, etc.)
 - (3) Use in environments with strong electrostatic or magnetic waves exists.
 - (4) Use nearby flammable substances.
 - (5) Use with the resistors coated in resin, etc.
 - (6) Use of water or water solution for flux cleaning after unwashed soldering or soldering.
 - (7) Use under environment of condensation
- 9.5 Ensure that the condition of the mounting is evaluated and verified on circuit boards when subjected to overloads in the form of pulses or surges, etc.
- 9.6 Take cares handling these products as they may be damaged and become defective if subject to impact, such as dropping.

SMD Product handling manual (RECOMMENDED LAND PATTERN)

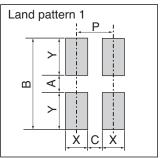
Note: This land pattern is not supported by the mounting evaluation.

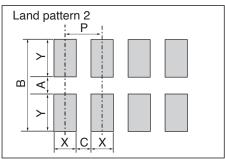

This is reference information only.

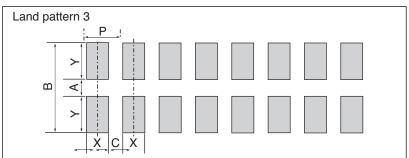
Application

All KAMAYA Surface Mount Devices

Recommended land pattern (Reference)


1. Square chip type (No. of terminals: 2)




Si		Flow soldering				Reflow soldering			
Metric	Inch	Α	В	Х	Υ	Α	В	Х	Υ
0402	01005					0.18	0.58	0.2	0.2
0603	0201		Not applied				0.9	0.3	0.3
1005	0402					0.5	1.3	0.5	0.4
1608	0603	1.0	2.6	8.0	0.8	1.0	2.0	0.8	0.5
2012	0805	1.3	3.1	1.25	0.9	1.3	2.7	1.25	0.7
3216	1206	2.2	4.3	1.6	1.05	2.2	3.9	1.6	0.85
3225	1210	2.2	4.3	2.5	1.05	2.2	3.9	2.5	0.85
5025	2010	3.9	6.3	2.5	1.2	3.9	5.9	2.5	1.0
6332	2512	5.2	7.6	3.2	1.2	5.2	7.2	3.2	1.0

^{*}For RLP, MLP please refer to the page 11.

2. Chip network type (No. of terminal: Multiple)

Land pattern	Style Termina	Terminals style	Terminals style P		Flow soldering					Reflow soldering			
				Α	В	С	Х	Υ	Α	В	С	Х	Υ
4	RAC10 2D		0.65					0.5	1.3	0.34 0.33	0.4		
_ '	RAC10 1A	С	0.65		Not applied				0.5	1.5	1.5 0.54	0.55	0.4
2	RAC10 4D		0.5							1.3	0.15	0.35	0.4
2	RAC16 4D	С	0.8	1.0	2.6	0.35	0.45	0.8	1.0	2.0	0.35	0.45	0.5
3	RAC16 8D	С	0.5	Not applied					1.0	2.0	0.2	0.3	0.5

Others

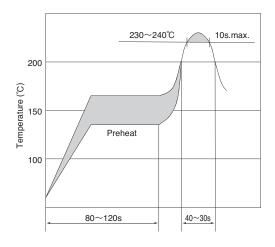
- (1) Please contact Kamaya Sales Dept. for other products and further details.
- (2) Please carry out an enough mounting evaluation when use these patterns.

^{*}For RCC16 and RCC20, Please contact Kamaya sales department.

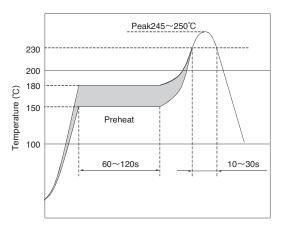
Information

SMD Product handling manual (RECOMMENDED SOLDERING CONDITION)

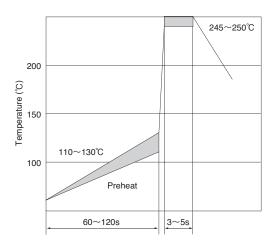
Note: This soldering condition is not supported by the mounting evaluation.


This is reference information only.

Application


All KAMAYA Surface Mount Devices

Recommended soldering condition (Reference)


- 1. Reflow soldering
 - 1.1 Recommended condition of Sn-Pb solder. Reflow times: 2 times

1.2 Recommended condition of Sn solder Reflow times: 2 times

2. Flow soldering (Recommended condition of Sn solder and Sn-Pb solder)

- 3. Soldering Iron (Recommended condition of Sn solder and Sn-Pb solder)
 - (1) Temperature of soldering iron tip: 300 ∞ C, Duration: 10 s max.
 - (2) Temperature of soldering iron tip: 350∞C, Duration: 3 s max.

Others

- (1) Please contact Kamaya Sales department for further information.
- (2) Please carry out an enough mounting evaluation when use this profile.

Term Explanation

Resistors

Rated Dissipation

The maximum value of the electric power that can continuously be impressed to the resistor at the ambient temperature provided for within the category temperature range is indicated.

The derated values of dissipation for temperatures in excess of 70°C shall be indicated by the derating Curve.

Please note that the chip resistor networks provide for the rated dissipation of each element and each package when you use it.

Rated Voltage

The maximum value of the D.C or r.m.s. voltage that can continuously be impressed to the resistor at the ambient temperature provided for within the range of the category temperature range is indicated.

Rated Voltage = (Rated Dissipation) (Rated Resistance). (d.c. or a.c. r.m.s. Voltage)

However, Limiting Element Voltage can only be applied to resistors when the resistance value is equal to or higher than the critical resistance value.

Critical Resistance Value

Critical resistance value is the resistance value at which the rated voltage is equal to the limiting element voltage. Below critical resistance value, please use the rated voltage as the limiting element voltage.

Limiting Element Voltage

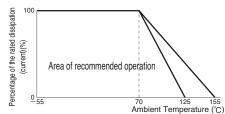
The maximum value of the d.c. or r.m.s. voltage that can continuously be impressed to the resistor and the resistive element is indicated. Limiting Element Voltage that provides for the kind and each shape is different.

Isolation Voltage

The maximum value of the d.c. voltage that can be impressed for 1 minute the one that the electrode (terminal) was lumped together and between the insulation exterior or substrates is indicated.

When the voltage that exceeds the isolation voltage is impressed for the electrode and the insulation exterior (substrate), the insulation exterior might be destroyed by generation of heat and the direct current electrolysis action by the leakage current.

Voltage proof


The r.m.s voltage is impressed for 1 minute the one that the electrode (terminal) was lumped together and between the insulation exterior or substrates, and the insulation exterior indicates the maximum value of the voltage that breakdown or flashover.

Category Temperature Range

The ambient temperature of the resistor that can continuously be used adding a regulated rated load (electric power) is shown. It is not a temperature of air outside of an electronic equipment, and it is necessary to compare it with the ambient temperature in the electronic equipment in which the resistor is built in.

Derating Curve

The derated values of dissipation for temperatures in excess of 70°C shall be indicated by the following Curve.

Variation of resistance with temperature (Temperature Coefficient of Resistance: TCR)

The change of resistance 1°C rate of the resistor within the range of the category temperature (category temperature range) is shown.

Temperature Coefficient of Resistance: TCR $(\times 10^{-6})^{\circ}$ C) = $\frac{R-R_0}{R_0} \times \frac{1}{T-T_0} \times 10^{-6}$

- R :Measured resistance at T°C
- Ro :Measured resistance at T°C
- T :Measured test temperature (°C)
- To :Measured base temperature (°C)

Especially, because the resistance temperature coefficient tends the large dependence of the measurement resistance on the measuring method, RLC/RLS/RCC/RLP&MLP needs noting.

Term Explanation

Chip Fuses & Fusible Resistors

Joule Heat

It is the heat generated by the current.

The fuse melts inside by joule heat, and interrupts the current.

Fusible Characteristics

Relation between current (I) and fusion time (t) that flows to fuse.

It shows for the fusible Resistors by the relation between an impressed electric power (W) and the fusion time (W-t characteristic).

Rated Voltage

It shows maximum voltage value fuse can work properly.

It is the maximum voltage value in which the circuit can be safely interrupted after the fuse workings.

On selecting a fuse, it is necessary to confirm that the maximum rated voltage is less than rated voltage.

Interrupting Rating

It shows Maximum voltage(Rated voltage) and Maximum current for an interrupting circuit safely.

Maximum voltage and Maximum current should be applied below interrupting rating.

Working Temperature Range

It is temperature range fuse can works with specified condition,

Ambient temperature is to be within category temperature range.

Rated Current

A value of current which the fuse can be complied with, according to the test conditions.

It is different from the maximum current that applied to fuses, considering a long life span, the deratings are required.

Steady - State Current

It is current value at time that regularly flows to circuit regularly.

Deratings

1) Nominal Derating

It is derating value for rated current.

The reduction rate is depended on the type of fuse.

2) Temperature Derating

It is ambient temperature derating value for rated current.

The reduction rate is depended on the types of fuse and ambient temperature.

In-rush Current(Rush current)

Current that rapidly flows on circuit when power supply is turned on.

In many cases In-rush Current is bigger than Steady-state Current.

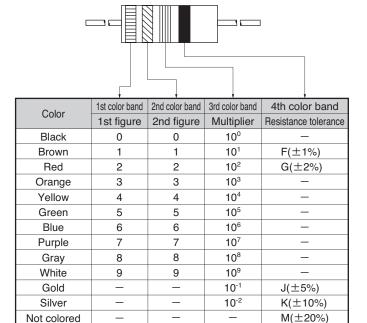
Chip fuses are confirmed to withstand In-rush Current.

Internal Resistance Value

An internal resistance values shown in this document include values in any materials of fuse,

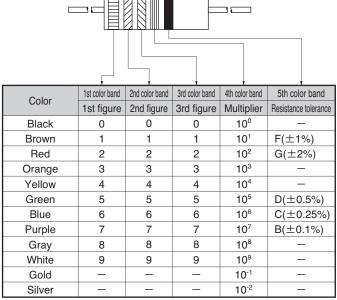
fuse element, outer terminations etc. Please refer to "section 10" for further information.

Additionally, resistance values are different depending on Temperature and Steady-state Current.

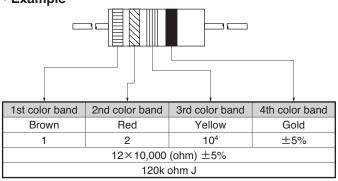

Maximum Open Circuit Voltage

Maximum open circuit voltage is the value of voltage applicable to both ends of resistors, when a resister is open condition in a circuit. This voltage shall be corresponding to 1,000 times the rated dissipation or maximum open circuit which is the less severe.

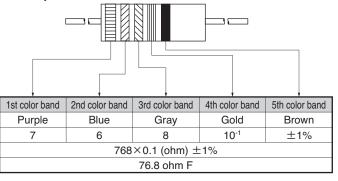
Product Marking


Color coding

• Three - color band or four - color band system


For three-color band system the 4th color band is eliminated (Resistance tolerance is ±20%)

• Five - color band system



*RC1/2U: Please refer to page 24.

Example

Example

Rated resistance symbols

The symbols to indicate rated resistance are depicted in 3 characters (for the E6, E12, and E24 series) or 4 characters (for the E48, E96 and E192 series) as indicated below

In the case of 3 characters, the first and second character represent the effective numeral, and the third character is the multiplier following the effective numeral. In the case of 4 characters, the first, second and third character represent the effective numeral, and the fourth character is the multiplier following the effective numeral. When a decimal point exists, the decimal point is represented by an R for all effective numerals.

• 3-Digit (example)

Datad vasiatawaa ayyubala	Desistance value
Rated resistance symbols	Resistance value
R15	0.15 ohm
1R5	1.5 ohm
150	15 ohm
151	150 ohm
152	1.5k ohm
153	15k ohm
154	150k ohm
155	1.5M ohm
156	15M ohm
157	150M ohm

• 4-Digit (example)

Rated resistance symbols	Resistance value
R154	0.154 ohm
1R54	1.54 ohm
15R4	15.4 ohm
1540	154 ohm
1541	1.54k ohm
1542	15.4k ohm
1543	154k ohm
1544	1.54M ohm
1545	15.4M ohm
1546	154M ohm

· Resistance values of 100M ohm and greater(example)

Rated resistance symbols	Resistance value
100M	100M ohm
1G00	1G ohm
10G0	10G ohm
100G	100G ohm

^{*}The letters M and G are used as multipliers for 10⁶ and 10⁹ respectively of the resistance value expressed in ohms.

Standard Resistance Values and Symbols

Code Tolerances

Code	Tolerance on rated resistance
Н	±50%
N	±30%
М	±20%
K	±10%
J	±5%
G	±2%
F	±1%
D	±0.5%
С	±0.25%
В	±0.1%

● Temperature Characteristics Symbol Table

Code	Temperature coefficient of resistance
E	±25×10 ⁻⁶ /℃
С	±50 × 10 ⁻⁶ / ℃
K	±100 ×10 ⁻⁶ /℃
D	±200 ×10 ⁻⁶ /℃
Α	±500 × 10 ⁻⁶ /℃
М	±1,000 × 10 ⁻⁶ /°C
N	±70 × 10 ⁻⁶ / ℃

•Significant Figure of Resistance Value

● Sig	nitica	ant F	igure	OT H	esis	Įά
E6	E12	E24	E48	E96	E192	
10	10	10	100	100	100 101	
				102	102 104	
			105	105	105	
				107	106 107 109	
		11	110	110	110 111	
				113	113 114	
	12	12	115	115	115 117	
	12	12		118	118 120	
			121	121	121 123	
				124	124 126	
			127	127	127 129 130	
		13		130	130 132 133	
			133	133	133 135	
				137	135 137 138	
			140	140	140 142	
				143	143 145	
			147	147	147 149	
15	15	15		150	150 152	
			154	154	154 156	
		16		158	158 160	
			162	162	162 164	
				165	165 167	
			169	169	169 172	
				174	174 176	
	18	18	178	178	178 180	
				182	182 184	
			187	187	187 189	
			100	191	191 193 196	
		00	196	196	198 200	
		20	005	200	203 205	
			205	205 210	208 210	
	I	1	1	210	010	1

E6	E12	E24	E48	E96	E192
22	22	22	215	215 221	215 218 221 223
			226	226	226 229
				232	232 234
		0.4	237	237	237 240
		24		243	243 246
			249	249	249 252
				255	255 258
			261	261	261 264
	27	27		267	267 271
			274	274	274 277
				280	280 284
			287	287	287 291
		30	301	294	294 298
				301	301 305
				309	309 312
			316	316	316 320
33	33	33		324	324 328
			332	332	332 336
				340	340 344
			348	348	348 352
		36		357	357 361
			365	365	365 370
				374	374 379
	39	39	383	383	383 388
				392	392 397
			402	402	402 407 412
			400	412	417
		43	422	422	422 427 432
			4.40	432	437 442
			442	442 453	448 453
				403	459
ırts.					

E6	E12	E24	E48	E96	E192
47	47	47	464	464	464 470
47	47	47		475	475 481
			487	487	487 493
		51		499	499 505
		01	511	511	511 517
				523	523 530
			536	536	536 542
	56	56		549	549 556
		00	562	562	562 569
				576	576 583
			590	590	590 597
				604	604 612
		62	619	619	619 626
		02		634	634 642
			649	649	649 657
68	68	68		665	665 673
			681 715	681	681 690
				698	698 706
				715	715 723
			750	732	732 741
		75		750	750 759
	82			768	768 777
			787	787	787 796
		82 91		806	806 816
			825	825	825 835
				845	845 856
			866	866	866 876
				887	887 898
			909	909	909 920
				931	931 942
			953	953	953 965
				976	976 988

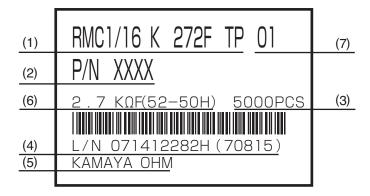
Numerical Symbols and Multipliers

Code	T(tera)	G(giga)	M(mega)	k(kilo)	m(milli)	μ (micron)	n(nano)	p(pico)
Multiplier	10 ¹²	10 ⁹	10 ⁶	10 ³	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²

Formula of Ohm's Law

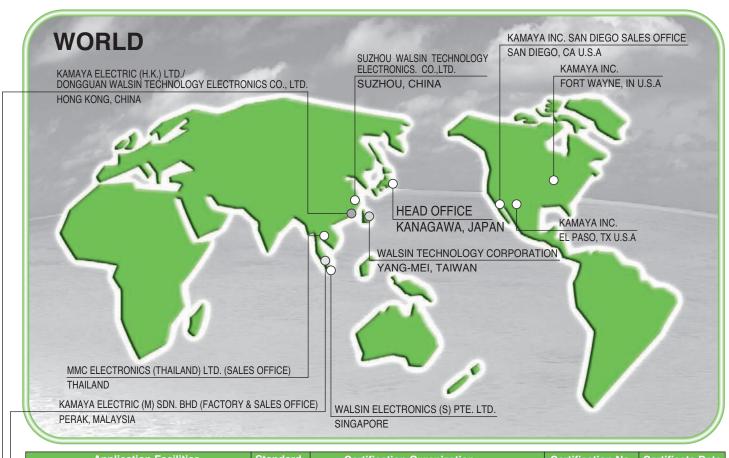
Direct Current	Power(P)			Voltage(E)			Current(I)			Resistance(R)		
Calculating Formula	EI	I ² R	E ²	IR	√PR	<u>P</u>	E R	$\sqrt{\frac{P}{R}}$	P E	E I	<u>E²</u> P	P

^{*}Please refer to each page for standard values of each parts.

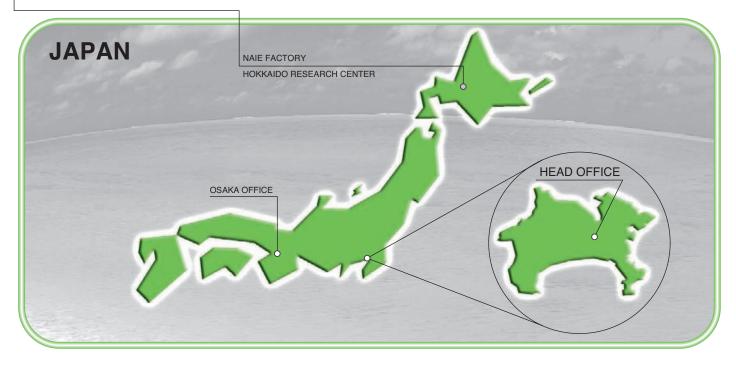


Kamaya Shipping Label

Kamaya products are put a shipping label on reel or other packaging. Refer to the sample of the shipping label as follows.


Example for chip resistors

RMC1/16K 272F TP 1608size, Fixed Thick Film Chip Resistor, 2.7k ohm F(±1%)



- (1)Product type(Style, Temperature coefficient of resistance, Rated resistance, Tolerance, Packaging)
- (2)Parts number from customer (P/N)
- (3)Quantity
- (4)Shipping Lot Number (L/N)
- (5)Manufacturer
- (6)Internal code 1
- (7)Internal code 2
- *There are cases in which (2) and (7) are not shown on Kamaya shipping label.
- *Please contact Kamaya sales department, if you need to confirm this label specification.

Kamaya Global Network

		Application Facilities		Certification Organization	Certification No.	Certificate Date
		NAIE Factory	ISO9001		2785613	Jul.28,1995
Г	JAPAN		ISO/TS16949	Bureau Veritas JapanCo.,Ltd	IATF 136837	Mar.22,2012
			ISO14001		2989282	May.9,2002
		KAMAYA ELECTRIC(M)SDN, BHD.	ISO9001		22815	Aug.10,2007
+	- MALAYSIA		ISO/TS16949	NQA Global Assurance	IATF 0106025	Jul.26,2007
			ISO14001		E3242	Jul.11,2007
		DONGGUAN WALSIN TECHNOLOGY ELECTRONICS CO., LTD.	ISO9001	UL DQS Inc	20003508 QM08	May.21,1996
	China		ISO/TS16949	OL DQS IIIC	IATF 0117277	Mar.25,2005
	(WALSIN Product)		ISO14001	CTI International Certification	04112E20082R3L	Aug.13,2003
			OHSAS 18001	EICS	04111S18001R1L	Aug.14,2008

http://www.kamaya.co.jp

HEAD OFFICE

8-4-17 Fukayanaka, Ayase-shi, Kanagawa, 252-1107 Japan Tel: (+81) 467-71-0886 / Fax: (+81) 467-71-0910

E-mail: sales@kamaya.co.jp

6th floor, Sin Nakajima Building, 1-9-20 Nishi Nakajima, Yodogawa-ku, Osaka-shi, Osaka, 532-0011 Osaka Office

TEL:(+81)6-6304-5761 FAX:(+81)6-6306-0131

Naie Factory, Hokkaido 955-1 Naie, Aza, Naie-cho, Sorachi-gun, Hokkaido, 079-0397

Hokkaido Research Center TEL: (+81)125-65-2171 FAX: (+81)125-65-2177

U.S.A KAMAYA INC. (SALES OFFICE AND WAREHOUSE)

URL http://www.kamaya.com/

6407 Cross Creek Blvd. Fort Wayne, IN 46818 U.S.A. Tel : (+1) 260-489-1533 / Fax : (+1) 260-489-2261 / E-mail : sales@kamaya.com

KAMAYA INC. (SAN DIEGO SALES OFFICE)

4163 Cleveland Ave #1 San Diego, CA 92103 U.S.A. Tel: (+1)858-775-6050 / Fax: (+1)619-284-8749

KAMAYA INC. (EL PASO WAREHOUSE) 28-A Concord Street, El Paso, TX 79906 U.S.A.

Tel: (+1)915-779-7253 / Fax: (+1)915-779-7180 / E-mail: sales@kamaya.com

TAIWAN WALSIN TECHNOLOGY CORPORATION

566-1, Kao-shi Road Yang-mei, Taoyuan, 326, Taiwan, R.O.C. Tel : (+886)3-4758711 / Fax : (+886)3-4756747

MALAYSIA KAMAYA ELECTRIC (M) SDN. BHD. (1ST FACTORY AND SALES OFFICE)

No. 2, Jalan Klebang 1/5 Zone, Perindustrian Bebas, Kinta Jalan Kuala Kangsar, 31200 Chemor, Perak, Malaysia.

Tel: (+60) 5-291-5522 / Fax: (+60) 5-291-2600 / E-mail: Kmy@kamaya.com.my

KAMAYA ELECTRIC (M) SDN. BND. (2ND FACTORY)

No. 17, Jalan Klebang 1/6 Zone, Perindustrian Bebas, Kinta Jalan Kuala Kangsar,

31200 Chemor, Perak, Malaysia.

HONG KONG KAMAYA ELECTRIC (H.K.) LTD.

NO.638, Mei Jing West Road (523799) Xiniupo Administrative Zone Dalang Town, Dong-Guan City, Guang Dong Province, China Tel: (+86)769-8106-9331 / Fax: (+86)769-8895-3204

CHINA SUZHOU WALSIN TECHNOLOGY ELECTRONICS. CO.,LTD.

NO.369 Changyang Street, Suzhou Industrial Park, Jiangsu P.R. 215024 China. Tel : (+86)512-6283-6888 / Fax : (+86)512-6283-0886 / E-mail : kamayasales@kamaya.co.jp

SINGAPORE WALSIN ELECTRONICS (S) PTE. LTD.

8 Ubi View #04-01, Serial System Building, Singapore 408554. Tel: (+65)6896-3868 / Fax: (+65)6861-3381

THAILAND MMC ELECTRONICS (THAILAND) LTD.

129/2 Moo17 Bangplee Industrial Estate, Bangsaothong, Bangsaothong Sub-District Samutprakarn 10540 Thailand

Tel : (+66)2-705-1346 / Fax : (+66)2-315-1565 / E-mail : mmethsa@mmeth.co.th

Important

Product specifications contained in this catalogue are subject to change at any time without notice. Please confirm specifications with your order.