
03E.pdf 04.5.21

Chip Monolithic Ceramic Capacitors for Automotive

Innovator in Electronics

Murata <u>Manufacturing</u> Co., Ltd.

Cat.No.C03E

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

CONTENTS

Part Numbering	2
Selection Guide of Chip Monolithic Ceramic Capacitors	4
for Automotive GCM Series	5
Temperature Compensating Type GCM15/18/21/31 Series	5
High Dielectric Constant Type GCM15/18/21/31/32 Series	6
Specifications and Test Methods	8
Package	13
①Caution	16
Notice	22

Part Numbering

Chip Monolithic Ceramic Capacitors

(Part	Number
•	

mber)	GC	М	18	8	B1	1H	102	κ	A01	κ	
	0	2	8	4	6	6	0	8	9	0	

2 Series

Product ID	Code	Series
GC	Μ	Automotive Tin Plated Layer

3 Dimension (L×W)

Code	Dimension (L×W)	EIA
15	1.0×0.5 mm	0402
18	1.6×0.8 mm	0603
21	2.0×1.25 mm	0805
31	3.2×1.6 mm	1206
32	3.2×2.5 mm	1210

Dimension (T)

Code	Dimension (T)
5	0.5 mm
6	0.6 mm
8	0.8 mm
9	0.85 mm
В	1.25 mm
С	1.6 mm
D	2.0 mm
E	2.5 mm
м	1.15 mm
N	1.35 mm
R	1.8 mm
X	Depends on individual standards.

GTemperature Characteristics

Code	Temperature Characteristics			Operating Temperature Range	
5C	C0G	-55 to 125°C	0±30ppm/°C	-55 to 125°C	
R7	X7R	-55 to 125°C	±15%	-55 to 125°C	
C7	X7S	-55 to 125°C	±22%	-55 to 125°C	

6 Rated Voltage

Code	Rated Voltage
0G	DC4V
0J	DC6.3V
1A	DC10V
1C	DC16V
1E	DC25V
1H	DC50V
2A	DC100V
2D	DC200V

Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter " \mathbf{R} ". In this case, all figures are significant digits.

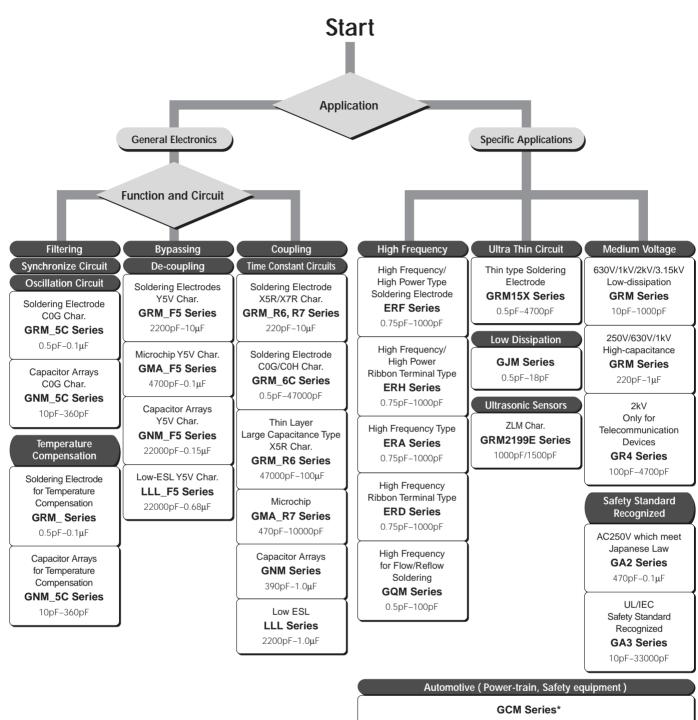
Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

8Capacitance Tolerance

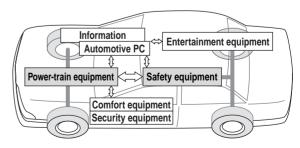
Code	Capacitance Tolerance	TC	Series	Сарас	itance Step
С	±0.25pF	CΔ	GCM	≦5pF	* 1pF
D	±0.5pF	CΔ	GCM	6.0 to 9.0pF	* 1pF
J	±5%	CΔ	GCM	≧10pF	E24 Series
к	±10%	X7R	GCM	E1:	2 Series
М	±20%	X7R	GCM	E6	Series

* E24 series is also available.

Individual Specification Code Expressed by three figures.



Continued from	the preceding page.
Packaging	
Code	Packaging
L	ø178mm Plastic Taping
D	ø178mm Paper Taping
К	ø330mm Plastic Taping
J	ø330mm Paper Taping
E	ø178mm Special Packaging
F	ø330mm Special Packaging
В	Bulk
С	Bulk Case
т	Bulk Tray



Note Please read rating and
 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc.
 This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering

Selection Guide of Chip Monolithic Ceramic Capacitors

0.5pF-10µF

★For other automotive equipment such as comfort, security, information, entertainment, GRM series (for general electronics) are available.

Chip Monolithic Ceramic Capacitors for Automotive

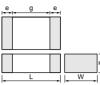
muRata

for Automotive GCM Series

Features

- 1. The GCM series meet AEC-Q200 requirements.
- 2. The GCM series is lead free product.
- The GCM series is a complete line of chip ceramic capacitors in 16V, 25V, 50V and 100V ratings. These capacitors have temperature characteristics of C0G and X7R.
- A wide selection of sizes is available, from miniature LxWxT: 1.0x0.5x0.5mm to LxWxT: 3.2x2.5x2.5mm.
- 5. Stringent dimensional tolerances allow highly reliable, high speed automatic chip replacement on PCBs.
- 6. The GCM series is available in paper or plastic embossed tape and reel packaging for automatic placement.

Applications


Automotive electronic equipment (Power-train, safety equipment)

Temperature Compensating Type GCM15/18/21/31 Series

тс	C0G (5C)										
Part Number	GCM15	GC	M18	GC	CM21	GCI	M31				
L x W [EIA]	1.00x0.50 [0402]	1.60x0.8	30 [0603]	2.00x1.	.25 [0805]	3.20x1.60 [1206]					
Rated Volt.	50 (1H)	100 (2A)	50 (1H)	100 (2A)	50 (1H)	100 (2A)	50 (1H)				
Capacitance (Ca	apacitance part nun	nbering code) and	T (mm) Dimension	(T Dimension par	t numbering code)		1				
0.5pF(R50)	0.50(5)	0.80(8)	0.80(8)								
0.75pF(R75)	0.50(5)	0.80(8)	0.80(8)								
1.0pF(1R0)	0.50(5)	0.80(8)	0.80(8)								
2.0pF(2R0)	0.50(5)	0.80(8)	0.80(8)								
3.0pF(3R0)	0.50(5)	0.80(8)	0.80(8)								
4.0pF(4R0)	0.50(5)	0.80(8)	0.80(8)								
5.0pF(5R0)	0.50(5)	0.80(8)	0.80(8)								
6.0pF(6R0)	0.50(5)	0.80(8)	0.80(8)								
7.0pF(7R0)	0.50(5)	0.80(8)	0.80(8)								
8.0pF(8R0)	0.50(5)	0.80(8)	0.80(8)								
9.0pF(9R0)	0.50(5)	0.80(8)	0.80(8)								
10pF(100)	0.50(5)	0.80(8)	0.80(8)								
12pF(120)	0.50(5)	0.80 (8)	0.80(8)								
15pF(150)	0.50(5)	0.80 (8)	0.80(8)								
18pF(180)	0.50(5)	0.80 (8)	0.80(8)								
22pF(220)	0.50(5)	0.80 (8)	0.80(8)								
27pF(270)	0.50(5)	0.80(8)	0.80(8)								
33pF(330)	0.50(5)	0.80(8)	0.80(8)								
39pF(390)	0.50(5)	0.80 (8)	0.80(8)								
47pF(470)	0.50(5)	0.80(8)	0.80(8)								
56pF(560)	0.50(5)	0.80 (8)	0.80(8)								
68pF(680)	0.50(5)	0.80(8)	0.80(8)								

muRata

Part Number		Dime	ensions (mn	n)	
Part Number	L	W	Т	е	g min.
GCM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2
GCM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4
GCM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5
GCM216			0.6 ±0.1		
GCM219	2.0 ±0.15	1.25 ±0.15	0.85 ±0.1	0.2 to 0.7	0.7
GCM21B	1		1.25 ±0.15		
GCM319	3.2 ±0.15	1.6 +0.15	0.85 ±0.1		1.5
GCM31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1	0.3 to 0.8	
GCM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2		
GCM32N			1.35 ±0.15		2.0
GCM32R	3.2 ±0.3	2.5 +0.2	1.8 ±0.2		2.0
GCM32D	3.2 ±0.3	2.5 ±0.2	2.0 ±0.2		1.0
GCM32E	1		2.5 ±0.2	0.3	1.0
GCM43R	4.5 ±0.4	22402	1.8 ±0.2		
GCM43E	4.5 ±0.4	3.2 ±0.3	2.5 ±0.2		2.0
GCM55R	5.7 ±0.4	5.0 ±0.4	1.8 ±0.2		_

* Bulk Case : 1.6 ±0.07(L)×0.8 ±0.07(W)×0.8 ±0.07(T)

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

тс				C0G (5C)				
Part Number	GCM15	GC	M18	GC	M21	GCN	//31	
L x W [EIA]	1.00x0.50 [0402]	1.60x0.8	30 [0603]	2.00x1.2	25 [0805]	3.20x1.6	0 [1206]	
Rated Volt.	50 (1H)	100 (2A)	50 (1H)	100 (2A)	50 (1H)	100 (2A)	50 (1H)	
Capacitance (Ca	apacitance part num	bering code) and	T (mm) Dimension	(T Dimension part	numbering code)			
82pF(820)	0.50 (5)	0.80(8)	0.80(8)					
100pF(101)	0.50(5)	0.80 (8)	0.80 (8)	0.60 (6)	0.60 (6)			
120pF(121)	0.50 (5)	0.80 (8)	0.80 (8)	0.60 (6)	0.60 (6)			
150pF(151)	0.50 (5)	0.80 (8)	0.80 (8)	0.60 (6)	0.60 (6)			
180pF(181)	0.50 (5)	0.80 (8)	0.80 (8)	0.60 (6)	0.60 (6)			
220pF(221)	0.50 (5)	0.80 (8)	0.80(8)	0.60 (6)	0.60(6)			
270pF(271)	0.50 (5)	0.80 (8)	0.80 (8)	0.60 (6)	0.60 (6)			
330pF(331)	0.50 (5)	0.80 (8)	0.80 (8)	0.60 (6)	0.60 (6)			
390pF(391)	0.50 (5)	0.80 (8)	0.80 (8)	0.60 (6)	0.60 (6)			
470pF(471)	0.50 (5)	0.80 (8)	0.80 (8)	0.60 (6)	0.60 (6)			
560pF(561)		0.80(8)	0.80(8)	0.60(6)	0.60 (6)			
680pF(681)		0.80(8)	0.80(8)	0.60(6)	0.60 (6)			
820pF(821)		0.80(8)	0.80(8)	0.60(6)	0.60 (6)			
1000pF(102)		0.80(8)	0.80(8)	0.85(9)	0.60(6)			
1200pF(122)			0.80(8)	0.85(9)	0.60 (6)			
1500pF(152)			0.80(8)	0.85(9)	0.60(6)			
1800pF(182)			0.80(8)		0.60(6)	0.85(9)		
2200pF(222)			0.80(8)		0.60(6)	0.85 (9)		
2700pF(272)			0.80(8)		0.60(6)	0.85(9)		
3300pF(332)					0.60(6)	0.85 (9)		
3900pF(392)					0.60(6)	0.85 (9)		
4700pF(472)					0.60(6)	0.85 (9)		
5600pF(562)					0.85(9)	0.85 (9)		
6800pF(682)					0.85(9)			
8200pF(822)					0.85(9)			
10000pF(103)					0.85(9)			
12000pF(123)							0.85(9)	
15000pF(153)							0.85(9)	
18000pF(183)							0.85(9)	
22000pF(223)							0.85(9)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GCM15/18/21/31/32 Series

тс		X7R (R7)											
Part Number	GCI	M15		GCM18			GCM21			GC	M31		GCM32
L x W [EIA]	1.00x0.5	50 [0402]	1.6	0x0.80 [06	503]	2.0	0x1.25 [0	805]		3.20x1.6	50 [1206]		3.20x2.50 [1210]
Rated Volt.	50 (1H)	25 (1E)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	16 (1C)
Capacitance (Ca	pacitance	part num	bering cod	de) and T (mm) Dime	ension (T D	imension	part numb	ering code	e)			
220pF(221)	0.50(5)												
270pF(271)	0.50(5)												
330pF(331)	0.50(5)												
390pF(391)	0.50(5)												
470pF(471)	0.50(5)												
560pF(561)	0.50(5)												
680pF(681)	0.50(5)												
820pF(821)	0.50(5)												
1000pF(102)	0.50(5)		0.80(8)	0.80(8)		0.6(6)							

ANote Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc. This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

C03E.pdf 04.5.21

Continued from the preceding page.

тс							X7R (R7)						
Part Number		M15		GCM18			GCM21			GC	M31		GCM3
L x W [EIA]	1.00x0.5	60 [0402]	1.60x0.80 [0603]		2.00x1.25 [0805]			3.20x1.6	60 [1206]		3.20x2.50 [1210]		
Rated Volt.	50 (1H)	25 (1E)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	16 (1C)
Capacitance (Ca	pacitance	part num	bering coo	de) and T (mm) Dime	nsion (T D	imension	part numb	ering code	e)			
1200pF(122)	0.50 (5)		0.80(8)	0.80(8)		0.6(6)							
1500pF(152)	0.50 (5)		0.80(8)	0.80(8)		0.6(6)							
1800pF(182)	0.50(5)		0.80(8)	0.80(8)		0.6(6)							
2200pF(222)	0.50(5)		0.80(8)	0.80(8)		0.6(6)							
2700pF(272)	0.50(5)		0.80(8)	0.80(8)		0.6(6)							
3300pF(332)	0.50(5)		0.80(8)	0.80(8)		0.6(6)							
3900pF(392)	0.50(5)		0.80(8)	0.80(8)		0.6(6)							
4700pF(472)	0.50(5)		0.80(8)	0.80(8)		0.6(6)							
5600pF(562)		0.50(5)	0.80(8)	0.80(8)		0.6(6)							
6800pF(682)		0.50(5)	0.80(8)	0.80(8)		0.6(6)							
8200pF(822)		0.50(5)	0.80(8)	0.80(8)		0.6(6)							
10000pF(103)		0.50(5)	0.80(8)	0.80(8)		0.6(6)							
12000pF(123)		0.50(5)		0.80(8)		0.6(6)							
15000pF(153)		0.50(5)		0.80(8)		0.6(6)							
18000pF(183)		0.50(5)		0.80(8)		0.6(6)							
22000pF(223)		0.50(5)		0.80(8)		0.6(6)							
27000pF(273)		0.50(5)		0.80(8)		0.85(9)							
33000pF(333)		0.50(5)		0.80(8)		0.85(9)							
39000pF(393)		0.50(5)		0.80(8)		0.85(9)							
47000pF(473)		0.50(5)		0.80(8)		1.25(B)							
56000pF(563)				0.80(8)		1.25(B)							
68000pF(683)				0.80(8)		1.25(B)							
82000pF(823)				0.80(8)		1.25(B)							
0.10μF(104)				0.80(8)		1.25(B)							
0.12μF(124)						1.25(B)							
0.15μF(154)					0.80(8)	1.25(B)			1.15(M)				
0.18μF(184)					0.80(8)	1.25(B)			1.15(M)				
0.22µF(224)					0.80(8)	1.25(B)			1.15(M)				
0.27μF(274)					0.00(0)	1.20(2)	1.25(B)		1.10(11)	1.15(M)			
0.33µF(334)							1.25(B)			1.15(M)			-
0.39µF(394)							1.25(B)			1.15(M)			
0.37μΓ (334) 0.47μF(474)							1.25(B)			1.15(M)			
0.47μľ (474) 0.56μF(564)							1.25(B)			1.13(N)			
0.68µF(684)							1.25(B)			1.6(C)			
0.88μF(884) 0.82μF(824)							1.25(B)			1.6(C)			
1.0μF(824)										1.15(C)	1.15(M)		-
							1.25(B)	1.25/01		1.13(111)			-
1.5μF(155)								1.25(B)			1.15(M)		
2.2µF(225)											1.15(M)	1 ((🔿)	
3.3µF(335)												1.6(C)	
4.7μF(475) 10μF(106)												1.6(C)	2.00(D)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

The tolerance will be changed to L: 3.2±0.2, W: 1.6±0.2, T: 1.15±0.15 for GCM31 25V 2.2µF type.

C03E.pdf 04.5.21

Specifications and Test Methods

No.	AEC-Q200	Specifi	cations	AEC-0200 Test Method				
٩U.	Test Item	Temperature Compensating Type	High Dielectric Type					
1	Pre-and Post-Stress Electrical Test	5		-				
	High Tempersture Exposure (Storage			_				
	Appearance	e No marking defects	1					
2	Capacitano Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	Sit the capacitor for 1000 ± 12 hours at $150\pm3^{\circ}$ C. Let sit for 24 ± 2				
	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	W.V. : 25Vmin. : 0.03 max. W.V. : 16V : 0.05 max.	hours at room temperature, then measure				
	I.R.	More than $10,000M\Omega$ or $500\Omega \bullet$ (Whichever is smaller)	F					
	Temperature Cycle	The measured and observed ch specifications in the following ta		Fix the capacitor to the supporting jig in the same manner and under the same conditions as (19). Perform the 1000 cycles				
	Appearance	e No marking defects		according to the four heat treatments listed in the following table. Let sit for 24 ± 2 hours at room temperature, then measure				
	Capacitanc Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	Step 1 2 3 4				
3	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C	W.V. : 25Vmin. : 0.03 max. W.V. : 16V : 0.05 max.	Temp. (°C) -55+0/-3 Room Temp. 125+3/-0 Room Temp. Time (min.) 15±3 1 15±3 1				
	I.R.	C : Nominal Capacitance (pF) More than 10,000MΩ or 500Ω • (Whichever is smaller)	F	 Initial measurement for high dielectric constant type Perform a heat treatment at 150⁺⁰/₋₁₀ °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement. 				
4	Destructive Phisical Analysis	No defects or abnormalities		Per EIA-469				
	Moisture Resistance	The measured and observed ch specifications in the following ta		Apply the 24-hour heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.				
	Appearance	e No marking defects		Let sit for 24±2 hours at room temperature, then measure.				
	Capacitanc Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%					
5	Q/D.F.	30pFmin. : Q≥350 10pF and over, 30pF and below: Q≥275+ $\frac{5}{2}$ C 10pFmax. : Q≥200+10C C : Nominal Capacitance (pF)	W.V. : 25Vmin. : 0.03 max. W.V. : 16V : 0.05 max.	65 60 65 50 45 45 45 45 45 45 45 45 45 45				
	LR.	More than 10,000MΩ or 500Ω • (Whichever is smaller)	F	2 20 10 10 10 10 10 10 10 10 10 1				
	Biased Humidity	The measured and observed ch specifications in the following ta						
	Appearance	e No marking defects		Apply the rated voltage and 1.3+0.2/-0Vdc (add 6.8k Ω resister)				
6	Capacitano Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	at $85\pm3^{\circ}$ C and 80 to 85% humidity for 1000 ± 12 hours. Remove and let sit for 24 ± 2 hours at room temperature, then				
U	Q/D.F.	30pF and over : $Q \ge 200$ 30pF and below : $Q \ge 100 + \frac{10}{3}$ CC : Nominal Capacitance (pF)	W.V. : 25Vmin. : 0.035 max. W.V. : 16V : 0.05 max.	measure. The charge/discharge current is less than 50mA.				
	I.R.	More than $1,000\Omega$ or $50\Omega \bullet F$ (Whichever is smaller)						

Specifications and Test Methods

Continued from the preceding page.

	AEC-	Q200	Specifi	cations					
No.	Test	Item	Temperature Compensating Type	High Dielectric Type	- AEC-Q200 Test Method				
	Operatior	nal Life	The measured and observed ch specifications in the following ta						
		Appearance	No marking defects		Apply 200% of the rated voltage for 1000±12 hours at				
		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	 125±3°C. Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. 				
7		Q/D.F.	30pFmin. : Q≥350 10pF and over, 30pF and below: Q≥275+ 5 C 10pFmax. : Q≥200+10C C : Nominal Capacitance (pF)	W.V. : 25Vmin. : 0.035 max. W.V. : 16V : 0.05 max.	 Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement. 				
		I.R.	More than $1,000M\Omega$ or $50\Omega \bullet F$ (Whichever is smaller)						
8	External V	Visual	No defects or abnormalities		Visual inspection				
9	Phisical D	Dimension	Within the specified dimensions		Using calipers				
		Appearance	No marking defects		Per MIL-STD-202 Method 215				
		Capacitance Change	Within the specified tolerance		 Per MIL-STD-202 Method 215 Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits 				
10	to Solvents	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	R7 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	Solvent 2 : Terpene defluxer Solvent 3 : 42 parts (by volume) of water 1 part (by volume) of propylene glycol				
		I.R.	More than 10,000M Ω or 500 Ω • (Whichever is smaller)	F	monomethylether 1 part (by volume) of monoethanolomine				
		Appearance	No marking defects						
		Capacitance Change	Within the specified tolerance		Three shocks in each direction should be applied along 3				
11	Mechanical Shock	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	R7 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	mutually perpendicular axes of the test specimen (18 shocks). The specified test pulse should be Half-sine and should have a duration : 0.5ms, peak value: 1500g and velocity change: 4.7m/s.				
		I.R.	More than 10,000M Ω or 500 Ω • (Whichever is smaller)	F					
		Appearance	No defects or abnormalities		Solder the capacitor to the test jig (glass epoxy board) in the				
		Capacitance Change	Within the specified tolerance		same manner and under the same conditions as (19). The capacitor should be subjected to a simple harmonic motion				
12	Vibration	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	R7 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	 having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 2000Hz. The frequency range, from 10 to 2000Hz and return to 10Hz, should be traversed in approximately 20 minutes. This motion should be 				
		I.R.	More than 10,000M Ω or 500 Ω • (Whichever is smaller)	F	applied for 12 items in each 3 mutually perpendicular directions (total of 36 times).				
	Resistand Soldering		The measured and observed ch specifications in the following ta	,					
		Appearance	No marking defects		 Immerse the capacitor in a eutectic solder solution at 260±5°C fo 10±1 seconds. Let sit at room temperature for 24±2 hours, then 				
13		Capacitance Change	Within the specified tolerance		measure.				
13		Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	R7 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	 Initial measurement for high dielectric constant type Perform a heat treatment at 150⁺⁰/₋₁₀ °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement. 				
		I.R.	More than 10,000M Ω or 500 Ω • (Whichever is smaller)	F					

C03E.pdf 04.5.21

Specifications and Test Methods

Continued from the preceding page.

	AEC-Q200		Specifi	cations					
lo.		Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method				
	Thermal	Shock	The measured and observed ch specifications in the following ta		Fix the capacitor to the supporting jig in the same manner and under the same conditions as (19). Perform the 300 cycles				
		Appearance	No marking defects		according to the two heat treatments listed in the following tab (Maximum transfer time is 20 seconds). Let sit for 24±2 hours				
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7 Within ±10.0%	room temperature, then measure				
14		Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	R7 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	Step 1 2 Temp. (°C) -55+0/-3 125+3/-0 Time (min.) 15±3 15±3 • Initial measurement for high dielectric constant type				
		I.R.	More than 10,000MΩ or 500Ω • (Whichever is smaller)	F	Perform a heat treatment at $150 \pm 0_{10}^{\circ}$ °C for one hour and the let sit for 48±4 hours at room temperature. Perform the initial measurement.				
		Appearance	No marking defects						
	Capacitance Change Within the specified tolerance								
15	ESD	Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	R7 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	Per AEC-Q200-004				
		I.R.	More than 10,000M Ω or 500 Ω • (Whichever is smaller)	F					
					(a) Preheat at 155°C for 4 hours. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS K-5902) (25% rosin in weight proportion). Immerse in eutection solder solution for 5+0/-0.5 seconds at 235±5°C.				
16	Solderab	ility	95% of the terminations is to be a continuously.	soldered evenly and	(b) Shall be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C.				
					(c) Should be placed into steam aging for 8 hours±15 minutes After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for ±5 seconds at 260±5°C.				
		Appearance	No defects or abnormalities		Visual inspection.				
		Capacitance Change	Within the specified tolerance		The capacitance/Q/D.F. should be measured at 25°C at the frequency and voltage shown in the table.				
17	Electrical Chatacteri-	Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	R7 W.V. : 25V min. : 0.025 max. W.V. : 16V : 0.035 max	Char. ΔC ΔC Item (1000pF and below) (more than 1000pF R7 (C≤10µF)) Frequency 1±0.1MHz 1±0.1kHz Voltage 0.5 to 5Vrms 1±0.2Vrms				
	zation	I.R. 25°C	More than 100,000M Ω or 1,000 $\Omega \bullet F$ (Whichever is smaller)	More than 10,000M Ω or 500 Ω • F (Whichever is smaller)	The insulation resistance should be measured with a DC volta				
		I.R. 125°C	More than 10,000M Ω or 100 $\Omega \bullet F$ (Whichever is smaller)	More than 1,000M Ω or 10 $\Omega \bullet F$ (Whichever is smaller)	 not exceeding the rated voltage at 25°C and 125°C and withir minutes of charging. 				
		Dielectric Strength	No failure		No failure should be observed when 250% of the rated voltage i applied between the terminations for 1 to 5 seconds, provided th charge/ discharge current is less than 50mA.				

Specifications and Test Methods

Continued from the preceding page.

	Continued fr	om the prec			
No.	AEC-	Q200	Specifi	cations	AEC-Q200 Test Method
140.	Test	Item	Temperature Compensating Type	High Dielectric Type	
		Appearance	No marking defects		Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply a force in the direction
		Capacitance Change	Within ±5.0% or ±0.5pF (Whichever is larger)	R7 : Within ±10.0%	shown in Fig. 2 for 5±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted
		Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	R7 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	with care so that the soldering is uniform and free of defects such as heat shock. Type a b c
18	Board Flex	l.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	t: 1.6mm (GCM15 : 0.8mm) Fig. 1	$\begin{array}{ c c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$
		Appearance	No marking defects		Solder the capacitor to the test jig (glass epoxy board) shown in
		Capacitance Change	Within the specified tolerance		Fig. 3 using a eutectic solder. Then apply *18N force in parallel with the test jig for 60sec.
		Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	R7 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *2N (GCM15)
19	Terminal Strength	I.R.	More than 10,000MΩ or 500Ω ∙ (Whichever is smaller)	F	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
20	Beam Load Test Destruction value should be exceed following one. < Chip L dimension : 2.5mm max. > Chip thickness > 0.5mm rank : 20N Chip thickness ≤ 0.5mm rank : 8N < Chip L dimension : 3.2mm min. > Chip thickness < 1.25mm rank : 15N		ax. > k : 20N k : 8N n. > nk : 15N	Place the capacitor in the beam load fixture as Fig. 4. Apply a force. < Chip Length : 2.5mm max. >	

Continued on the following page. \square

Specifications and Test Methods

Continued from the preceding page.

Na	AEC-0	Q200	Specifi	cations	AEC-Q200 Test Method			
No.	Test	Item	Temperature Compensating Type	High Dielectric Type	AEC-0200 Test Miethod			
		Capacitance Change Temperature Coefficent	Within the specified tolerance. (Table A) Within the specified tolerance. (Table A)	R7 : Withn ±15% (-55°C to +125°C)	The capacitance change should be measured after 5 min. at each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determind using the capacitance measured in step 3 as a reference. When cycling the			
21	Capacitance Temperature Character- istics	Capacitance Drift	Within ±0.2% or ±0.05 pF (Whichever is larger.) * Not apply to 1X/25V		temperature sequentially from step 1 through 5 (Δ C: +25°C to +125°C : other temp. coeffs.: +25°C to +85°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is caluculated by dividing the differences between the maximum and minimum measured values in the steps 1, 3 and 5 by the capacitance value in step 3. $\underbrace{\frac{\text{Step} \qquad \text{Temperature (°C)}}{1 \qquad 25\pm2} \\ \underline{2 \qquad -55\pm3 (\text{for } \Delta \text{C to } \text{R7})} \\ \underline{3 \qquad 25\pm2} \\ \underline{4 \qquad 125\pm3 (\text{for } \Delta \text{C } / \text{R7}), 85\pm3 (\text{for other TC})} \\ \underline{5 \qquad 25\pm2} \\ \hline \end{array}$			

Table A

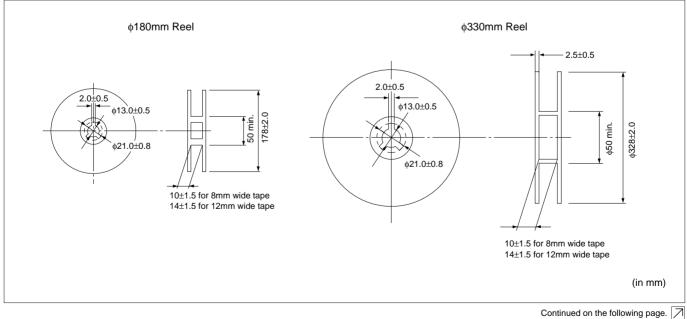
Char.		Capacitance Change from 25°C (%)							
	Nominal Values (ppm/°C) Note1	-5	55	-3	30	-10			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		

Note 1 : Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for ΔC)/85°C (for other TC).

Package

Packaging Code

Packaging Type	Tapo Carrier Backaging	Rulk Case Dackaging	Bulk Packaging	
	Tape Carrier Packaging	Bulk Case Packaging	Bulk Packaging in a bag	
Packaging Code	D, L, K, J	С	В	

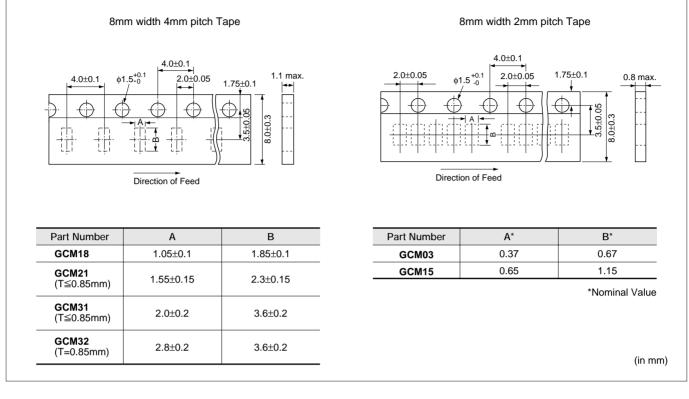

Minimum Quantity Guide

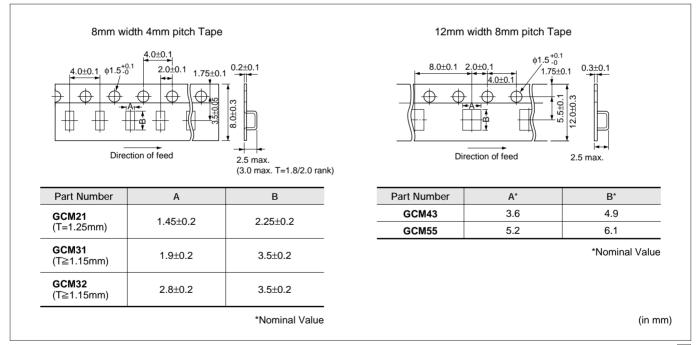
Part Number		Dimensions (mm)		Quantity (pcs.)						
				ø180mm reel		ø330mm reel		Bulk Case	Dull Dog	
		L	w	Т	Paper Tape	Plastic Tape	Paper Tape	Plastic Tape	DUIK Case	Bulk Bag
GCM18	GCM18	1.6	0.8	0.8	4,000	-	10,000	-	15,000 ¹⁾	1,000
				0.6	4,000	-	10,000	-	10,000	1,000
	GCM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
For Flow/Reflow				1.25	-	3,000	-	10,000	5,000	1,000
			1.6	0.85	4,000	-	10,000	-	-	1,000
	GCM31	3.2		1.15	-	3,000	-	10,000	-	1,000
				1.6	-	2,000	-	6,000	-	1,000
For Reflow	GCM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
	GCM155	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
	GCM32 3.2		2.5	1.15	-	3,000	-	10,000	-	1,000
		3.2		1.35	-	2,000	-	8,000	-	1,000
				1.8/1.6	-	1,000	-	4,000	-	1,000
	GCM43 4.5	4.5	3.2	1.15	-	1,000	-	5,000	-	1,000
		4.5	4.5 5.2	1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
	GCM55 5.7			1.15	-	1,000	-	5,000	-	1,000
		57	5.0	1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
		5.7	5.0	2.5	-	500	-	2,000	-	500
			3.2	-	300	-	1,500	-	500	

1) 68000pF/0.1 μF of R7 50V are not available by bulk case.

■ Tape Carrier Packaging

1. Dimensions of Reel



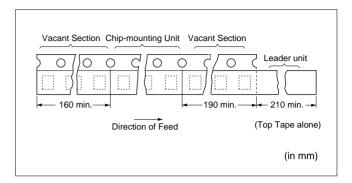

Package

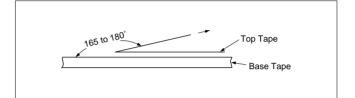
Continued from the preceding page.

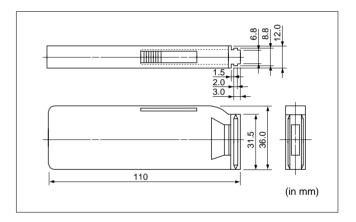
2. Dimensions of Paper Tape

3. Dimensions of Plastic Tape

Package


Continued from the preceding page.


- 4. Taping Method
 - Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
 - (2) Part of the leader and part of the empty tape shall be attached to the end of the tape as follows.
 - (3) The top tape and base tape are not atteached at the end of the tape for a minimum of 5 pitches.
 - (4) Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
 - (5) The top tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocked holes.
 - (6) Cumulative tolerance of sprocket holes, 10 pitches : ± 0.3 mm.
 - (7) Peeling off force : 0.1 to 0.6N* in the direction shown below.


*GCM03 : 0.05 to 0.5N

Dimensions of Bulk Case Packaging

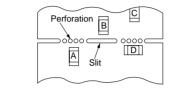
The bulk case used antistatic materials. Please contact Murata for details.

■ Storage and Operating Condition

Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases. Storage environment must be at an ambient temperature of 5-40 degree C and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have elapsed, check solderability before use. (Reference Data 1. Solderability) FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY

RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

Soldering and Mounting


1. Mounting Position

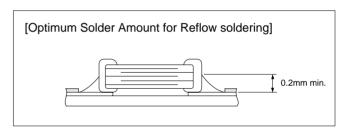
Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

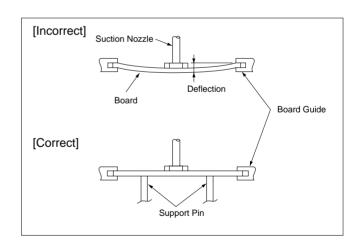
[Component direction]

Locate chip horizontal to the direction in which stress acts.

[Chip Mounting Close to Board Separation Point]

Chip arrangement Worst A-C- (B, D) Best


- 2. Solder
- Overly thick application of solder paste results in excessive fillet height solder.


This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.

- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

3. Chip Placing

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.

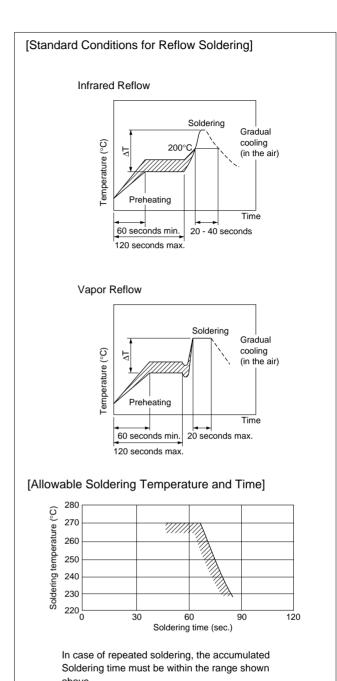
ACaution

Continued from the preceding page.

- 4. Reflow Soldering
- Sudden heating of the chip results in distortion due to excessive expansion and construction forces within the chip causing cracked chips. So when preheating, keep temperature differential, ΔT , within the range shown in Table 1. The smaller the ΔT , the less stress on the chip.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the above table.

Table 1

Part Number	Temperature Differential		
GCM03/15/18/21/31	∆T≦190°C		
GCM32/43/55	∆T≦130°C		


Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

5. Leaded Component Insertion

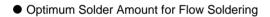
If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

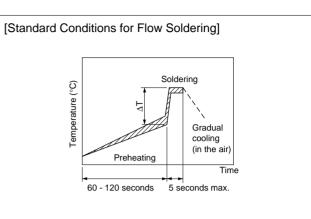
Before mounting leaded components, support the PCB using backup pins or special jigs prevent warping.

above.

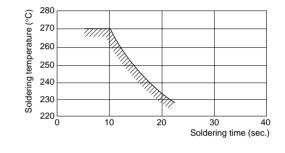
Caution

Continued from the preceding page.

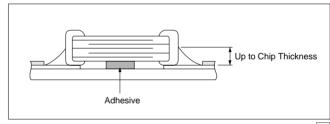

- 6. Flow Soldering
- Sudden heating of the chip results in thermal distortion causing cracked chips. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- When preheating, keep temperature differential between solder temperature and chip surface temperature, ΔT, within the range shown in Table 2. The smaller the ΔT, the less stress on the chip.


When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Don't apply flow soldering to chips not listed in Table 2.


Table 2

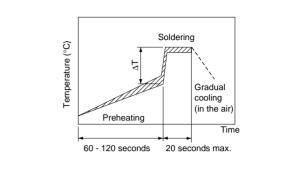
Part Number	Temperature Differential		
GCM18/21/31	∆T≦150°C		



[Allowable Soldering Temperature and Time]

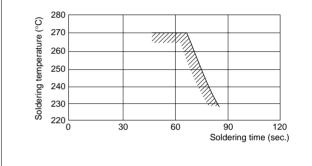
In case of repeated soldering, the accumulated Soldering time must be within the range shown above.

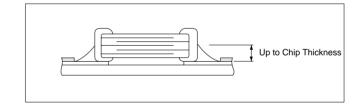
ACaution


Continued from the preceding page.

7. Correction with a Soldering Iron

- (1) For Chip Type Capacitors
- Sudden heating of the chip results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential, ΔT, within the range shown in Table 3. The smaller the ΔT, the less stress on the chip.


Та	ble	3
ıч	DIC.	0


Part Number	Temperature Differential		
GCM15, GCM18/21/31	∆T≦190°C		
GCM32/43/55	∆T≦130°C		

[Standard Conditions for Soldering Iron Temperature]

[Allowable time and Temperature for Making Corrections with a Soldering Iron]

8. Washing

Using a Soldering Iron

• Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

Optimum Solder Amount when Corrections Are Made

Failure to follow the above cautions may result, worst case, in a short circuit and fuming when the products is used

■ Handling

1. Inspection

Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.

- 2. Board Separation (or Depane-lization)
- Board flexing at the time of separation causes cracked chips or broken solder.
- Severity of stresses imposed on the chip at the time of board break is in the order of :

Pushback<Slitter<V Slot<Perforator.

- Board separation must be performed using special jigs, not with hands.
- 3.Reel and bulk case
- In the handling of reel and case, please pay attentionnot to drop it.

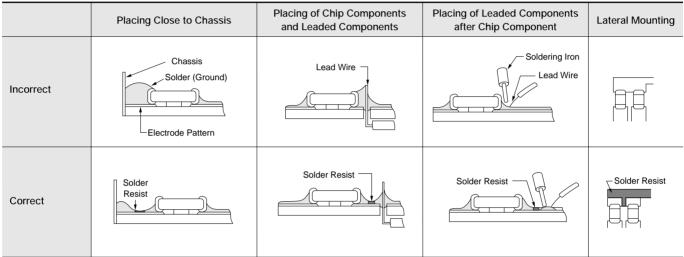
Please do not use chip of the case which dropped. FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

C03E.pdf 04.5.21

Notice

■ Soldering and Mounting

1. PCB Design

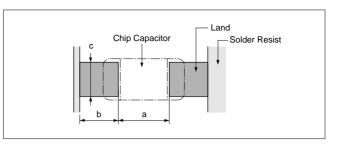

(1) Notice for Pattern Forms

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

Pattern Forms



Notice

Continued from the preceding page.

(2) Land Dimensions

Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions (L \times W)	а	b	С
GCM18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
GCM21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
GCM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4
				(in mm)

Table 2 Reflow Soldering Method

Dimensions Part Number	Dimensions (L×W)	а	b	с
GCM03	0.6×0.3	0.2-0.3	0.2-0.35	0.2-0.4
GCM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4-0.6
GCM18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8
GCM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1
GCM31	3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4
GCM32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3
GCM43	4.5×3.2	3.0-3.5	1.2-1.4	2.3-3.0
GCM55	5.7×5.0	4.0-4.6	1.4—1.6	3.5-4.8

(in mm)

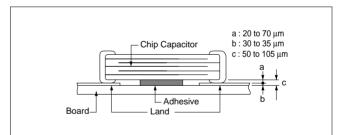
2. Adhesive Application

 Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered.

The amount of adhesive must be more than dimension c shown in the drawing below to obtain enough bonding strength.

The chip's electrode thickness and land thickness must be taken into consideration.

 Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000pa-s (500ps) min. (at 25°C)


3. Adhesive Curing

Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

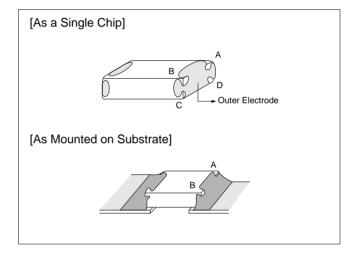
Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

C03E.pdf 04.5.21

Notice


Continued from the preceding page.

- 4. Flux Application
- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability.
 So apply flux thinly and evenly throughout.
 (A foaming system is generally used for flow soldering).

 Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently cleaned. Use flux with a halide content of 0.2w% max. But do not use strongly acidic flux.

Wash thoroughly because water-soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

- 5. Flow Soldering
- Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.

Notic<u>e</u>

- Other
- 1. Resin Coating When selecting resin materials, select those with low contraction.
- 2. Circuit Design
 - These capacitors on this catalog are not safety recognized products
- 3. Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data here in are given in typical values, not guaranteed ratings.

∧Note:

1. Export Control (For customers outside Japan)

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons. (For customers in Japan)

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage to a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1 Aircraft equipment
 - (2) Aerospace equipment (4) Power plant equipment
 - 3 Undersea equipment
 - 5 Medical equipment
 - 7 Traffic signal equipment
 - 9 Data-processing equipment
- 6 Transportation equipment (vehicles, trains, ships, etc.) 8 Disaster prevention / crime prevention equipment
 - 1 Application of similar complexity and/or reliability requirements to the applications listed in the above
- 3. Product specifications in this catalog are as of April 2004. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

muRata Murata Manufacturing Co., Ltd.

http://www.murata.com/

Head Office 2-26-10, Tenjin Nagaokakyo-shi, Kyoto 617-8555, Japan Phone: 81-75-951-9111