CORE Generator
Guide

S XILINX®

& XILINX®

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PClI, RocketlO, SelectlO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-Il Pro, Virtex-1l EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2003 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

CORE Generator Guide www.xilinx.com
1-800-255-7778

http://www.xilinx.com

SXILINX®

Preface

About This Guide

This manual describes the Xilinx™ CORE Generator™, a design tool that delivers
parameterizable cores optimized for Xilinx FPGAs.

Before using this manual, you should be familiar with the operations that are common to
all Xilinx software tools: how to bring up the system, select a tool for use, specify
operations, and manage design data.

Guide Contents

This book contains the following chapters.

Additional Res

Chapter 1, “Introduction”

Chapter 2, “Getting Started”

Chapter 3, “Using the CORE Generator”

Chapter 4, “Batch Mode and Polling Mode”

Chapter 5, “Schematic and HDL Design Flows”

Chapter 6, “The Memory Editor”

Chapter 7, “The Updates Installer”

Appendix A, “Get Models”

Appendix B, “Configuration Files and Global Preferences”

Appendix C, “Troubleshooting the CORE Generator System”

ources

For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLSs.

Resource

Description/URL

Tutorials

Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser

Database of Xilinx solution records
http://support.xilinx.com/xInx/xil_ans_browser.jsp

CORE Generator Guide

www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp

ST XILINX® Preface: About This Guide

Resource Description/URL

Application Notes | Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which contains
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/partinfo/databook.htm

Problem Solvers Interactive tools that allow you to troubleshoot your design issues
http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

http://www.support.xilinx.com/xInx/xil_tt_ home.jsp

Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical

The following typographical conventions are used in this document:

Convention Meaning or Use Example
Messages, prompts, and
Courier font program files that the system | speed grade: - 100
displays
Courier bold thera_l commanqs that you ngdbui | d desi gn_nane
enter in a syntactical statement
_ fCommands that you select File — Open
Helvetica bold romamenu
Keyboard shortcuts Ctrl+C
Variables in a syntax
statement for which you must | ngdbui | d desi gn_nane
supply values
See the Development System
Italic font References to other manuals Reference Guide for more
information.
If a wire is drawn so that it
Emphasis in text overlaps the pin of a symbol,
the two nets are not connected.
4 www.Xxilinx.com CORE Generator Guide

1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/apps/appsweb.htm
http://support.xilinx.com/partinfo/databook.htm
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

Conventions

$7XILINX°

Convention

Meaning or Use

Example

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as

bus[7: 0] , they are required.

ngdbui | d [opti on_namne]
desi gn_nane

A list of items from which you

Repetitive material that has
been omitted

Braces { } must choose one or more I owpwr ={on] of 1}

. Separates items in a list of _
Vertical bar | choices | owpwr ={on| of f}

. L | OB #1: Nane = QQUT
Vertical ellipsis | OB #2° Nanme = CLKI N

Horizontal ellipsis . ..

Repetitive material that has

al I owbl ock bl ock_nane

Online Document

been omitted locl loc2 ... locn;
The following conventions are used in this document:

Convention Meaning or Use Example
Cross-reference link to a See the section “Additional
location in the current file or | Resources” for details.

Blue text . L)]
in another file in the current Refer to “Title Formats” in
document Chapter 1 for details.
Cross-reference link to a See Figure 2-5 in the Virtex-lI
Red text

location in another document

Handbook.

Blue, underlined text

Hyperlink to a website (URL)

Go to http://www.xilinx.com
for the latest speed files.

CORE Generator Guide

www.xilinx.com
1-800-255-7778

http://www.xilinx.com

ST XILINX® Preface: About This Guide

6 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Table of Contents

Preface: About This Guide

GUIAE CONTENTS . . oot e 3
AddiItional RESOUICES oo 3
CONVENTIONS . . oot 4
Typographical.o 4
ONlINE DOCUMIEBNTottt e e e e e e e e 5

Chapter 1. Introduction

OV IV B . . o 13
NeW FeatUres 13
Xilinx Smart-IP Technology e 14
Design FIow 14
CORE Version Management.t 15
Obsolete and Removed COrESottt e 16

Chapter 2: Getting Started

System Requirements and Installation Information.......................... 17
Starting the CORE Generator.t 18
Starting the CORE Generator From the Windows Environment 18
Starting the CORE Generator From the UNIX Workstation Environment 18
Starting the CORE Generator from Xilinx ISE. 18
Setting PreferenCeso 19
Command Line OptioNS.t 20
Usingthelnterface........... .. 22
Main WINAOW 22
MBNU Bar . ittt e e e 23

Standard Toolbar 23

View Catalog Toolbar.ot e 23

Cores Catalog BrOWSEr . .. vttt e et e 24

Generated Modules WiNdOWot 24

Console WINAOWo e 25

Using Dialog BOXESot 25
Using Common Fields e e e e 25

BrowWSe BUHIONS ottt ittt e e e e 25
Additional RESOUICES e 26
Accessing Core DataSheets i 27

Chapter 3: Using the CORE Generator

Using the Cores Catalog Browser............ i .. 29
Sortingthe Catalog i 31
Adjusting Columnsand Panels i 31
Using the Generated Modules Window. 31
CORE Generator Guide www.Xxilinx.com

1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Accessing New and Updated Cores. ...t 31
INstalling NeW COreso e 32
Working With Licensed COres.t e 33
Creatinga New Project. e 33
Opening an EXisting Project. ... 35
Changing Project OptionSt 36
Output Options —FIow Vendor e 37
Target ArChiteCtUIrE.o e e 37
OVEIWIITE FilES . . o e 38

DS N BNty . o v ot e e e 38

Netlist BUS FOrMaAtot e e 39

Design Flows Supported by the CORE GENeratorvvuvvinunnanene... 39

Output Options — Output Products. e 40
Target ArChitecture. 40
OVEIWIItE FIlES . . . o e e 41

OULPUL ProduUCESo 41

Formal Verification. o 42
Elaboration OpLtionso v i 42
NetlistBus Format 44
Creating a CustomMized COre.t 44
Recustomizing a Core 45
Regenerating a Core. 46
Selecting Target XILINX FPGA Family Options. 47
Using the Web Browser and the PDF Viewer 47
Setting Preferences. 48
Location of Web BrowSero e 48
Location Of PDF VieWer o e e 48

USE PrOXY ottt e 49
Proxy Host and ProxXy POrt.o 49
Automatically open last project 49
Automatically overwrite outputfiles 49
Only display supported cores for target architecture. 49
Display 0bsolete COresot 49
Close IP Customization Dialog after Generation 49
CORE Generator Data Sheets. 49
ACCESSING COMBS . . .ottt e e e e 51
Configuring the Cores Catalog BrowWSEr. 51
Adding Core Customizerstothe CoresCatalog............., 51
Visibility Example 51
Removing Cores from View inthe CoresCatalog 52
CopYiNg @ ProjJeCt 52
Input and OULPUL FIleS e 54
Using Core Customization GUIS. ... e 57
Core Customization GUI OVerVIEeWt i 57
Naming CORE Generator Modules i, 57
Using Customization GUIBULIONSot e 58
llegal or Invalid Values 58
USING the Core VIBWETt e e e 58
Setting Options Using the Core Symbol i, 59
COE FIlES . o ot e 60

8 www.Xxilinx.com CORE Generator Guide

1-800-255-7778

http://www.xilinx.com

$7XILINX°

Generating CoresinBatch Mode i 65

S, ot 65
Performing CORE Generator Operations in Xilinx ISE....................... 65
Integrating CORE Generator into Applicationsccvviiin. 65
ASY and XSF Symbol InformationFiles 66

Chapter 4. Batch Mode and Polling Mode

Batch Mode o 67
Batch Mode Command Line Options i, 67
Command Files 67
coregen.iniZcoregen_USer_Name.inittt 68
User-Generated Command Files i 68
XCO FIlBS . o ot e e 68
XCO FIle SYNAX .« o v vttt e e e e e e e e 69

XCP IS o 70
COPEOEN.IOG . ottt 70
CORE Generator CommandsSttt e 71
Supported Commands in XCOand XCPFiles...................... ...t 72
CORE Generator Global Properties.................. oiiiiii.. 73
ProJect Properties 74
Polling Mode 76
OutputPolling Files. 76
InputPolling Files 76

Chapter 5: Schematic and HDL Design Flows

Understanding Schematic Design Flows............ 77
ISE Design FIOW 77
Mentor Design FIOWS 77

Mentor eProduct (Formerly Innoveda) Design Flow 77
Mentor Design ArchiteCt FIOW oot e e 78
Cadence Design FIOWo 78

Introduction to HDL Design FIows i 79
HDL Behavioral Simulation Flow Features i ... 79

Creating Verilog Designs. 82

Verilog HDL Design FIow. 83
Verilog Design Flow Procedure. 83

Verilog myadder8.veo Instantiation Template File. 86
Verilog Parent Design File: myadder8 top.v, 86
adder_th.V File . .. 87
Synplicity Verilog Black BoOX. oottt 89

Creating VHDL DeSIgNSt 91

VHDL HDL Design FIOW. e 92
VHDL Design FIow Proceduret i 92

VHDL Template File myadder8.vho. i 95
VHDL Parent Design File myadder8 top.vhd 96
VHDL Test Bench File myadder_tb.vhd. i ... 98
VHDL BIaCk BOX . . . vt 99
CORE Generator Guide www.Xxilinx.com 9

1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Using Instantiation Templates. 100
Using a VEO Instantiation Template File........... o o, 100
Verilog Instantiation Template foran 8-Bit Adder 101

Verilog Wrapper file for adder8: adder8.v 101

Using a VHO Instantiation TemplateFile 103
VHDL Instantiation Template for adder8. (adder8.vho). 103

VHDL Wrapper File for adder8: adder8.vhd i, 104

Chapter 6: The Memory Editor

Memory Editor OVErVIeW 107
The Memory Editor GUI 108
Creating a Memory with a Single Memory Block 112
Adding Additional Memory BlockstoaMemory 114
Specifying COE File Keywords. i 115
Importinga CSV File. 115
Generatinga CSV File. 117
CGF File Format 117
Sample CGFand COEFiles e 117
Sample CGF and COE Files — Single Memory Block 117
Sample CGF File Specifying a Single Memory Block (single.cgf) 117
COE File Generated from single.cgf (single_tiger.coe) 118
Sample CGF and COE Files — Multiple Memory Blocks 118
Sample CGF File Defining 3 Memory Blocks (multiple.cgf) 118
COE file generated for block #1 of the memory specified by the CGF file multiple.cgf

(multiple_bIOCKL.COB) . . . v vttt 120

COE File Generated for Block #2 of the Memory Specified by the CGF File multiple.cgf
(multiple_bIOCK2.COB) ottt 121

COE File Generated for Block #3 of the Memory Specified by the CGF File multiple.cgf
(multiple_bIoCK3.COE) . . . v vttt 125

Chapter 7: The Updates Installer

OV IV W L . e 127
FOatUNES. . .. 127
Install Package Definition............... . i 128
Setting Up your Environment i 128
PrOXY SEtHINGS . . . oo e 129
Web Browser Location 129
User Registration i e 129
Required Inputs for IP Update Packages i 130
Installing Cores using the Graphical User Interface......................... 130
The Selection Pane 130
Selecting PackagestoInstall........... .. i 131
RUNNING Get MOdEIS. 131

Appendix A: Get Models

GetMOdEelS OVEIVIBW o s 133
Command line SYNtaX.o 134
10 www.xilinx.com CORE Generator Guide

1-800-255-7778

http://www.xilinx.com

$7XILINX°

Required Parameters 134
Optional Parameters 134
NPULS 135
OULPULS . . .o 135

Appendix B: Configuration Files and Global Preferences

CORE Generator Configuration Files.................. 137
coregen. P File . .. 137
coregen.prf File .. o 137
Supported Preference File Properties ... 138

Preference File Exampleo i 139

Global Preferences. 139

Appendix C: Troubleshooting the CORE Generator System

1-800-255-7778

FiNding Solutions 141
Additional RESOUICESot 142
AllianceCORE Modules e 142
Obtaining Customer SUPPOIT. 142
N X . 143
CORE Generator Guide www.xilinx.com 11

http://www.xilinx.com

$7 XILINX°

12 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

SXILINX®

Chapter 1

Introduction

Overview

New Features

This chapter provides an overview of the CORE Generator™ System. The chapter contains
the following sections:

“Overview”

“New Features”

“Design Flow”

“CORE Version Management”

The CORE Generator System is a design tool that delivers parameterized cores optimized
for Xilinx® FPGAs. It provides you with a catalog of ready-made functions ranging in
complexity from simple arithmetic operators such as adders, accumulators, and
multipliers, to system-level building blocks such as filters, transforms, FIFOs, and
memories.

The major new and improved features for this release include the following.

More CORE Generator operations are integrated into Project Navigator.

The following CORE Generator operations can now be performed from within Project
Navigator, without opening the CORE Generator GUI:

¢+ Adding a customized core to a Project Navigator project

¢+ Recustomizing a core

¢+ Regenerating a core

¢+ Regenerating all of the cores in a project

¢+ Viewing the HDL functional model for a core

+ Viewing the CORE Generator log

You can also open the CORE Generator window from within ISE to manage the cores
in a project.

All of these operations are described in the ISE Guide, the ISE online help system. The
core related help topics are grouped under FPGA Design - Using Intellectual
Property (Cores) in the help Table of Contents.

AllianceCORE™ cores are no longer listed in the core catalog. Refer to the IP Center
page on xilinx.com (http://www.xilinx.com/ipcenter) for the most up-to-date
information on third party AllianceCOREs.

CORE Generator Guide

www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/ipcenter

$7 XILINX°

Chapter 1: Introduction

» The CORE Generator™ main menu structure has been enhanced to present menu
selections in a manner which is more logically organized and consistent with other
Xilinx® applications.

* New global preferences.

¢+ Agglobal preference lets you close core customization GUIs automatically after a
core has been generated.

+ A global preference controls whether cores which are scheduled to be obsoleted
are displayed in the core catalog or not.

* Memory Editor improvements.

¢ Support for reading and writing CSV (Comma delimited) format data files. These
file are typically exported from or imported into Microsoft™ Excel spreadsheets.

+ The Memory Editor now displays the ASCII equivalent of the data value in each
memory location. The ASCII equivalents are displayed in the rightmost column of
the Memory Contents Panel.

+ If your memory data has a data width of 8, you can now enter an ASCII character
in the ASCII column of the Memory Contents Panel and the equivalent data value
will be placed in the corresponding memory address.

Xilinx Smart-IP Technology

Design Flow

The CORE Generator™ System creates customized cores which deliver high levels of
performance and area efficiency. This is accomplished by taking advantage of Xilinx’s core-
friendly FPGA architectures and Xilinx Smart-IP™ technology.

Xilinx Smart-IP technology provides FPGA architectural advantages such as look-up
tables (LUTSs), distributed and block RAM, embedded multipliers, and segmented routing.
This technology also enables relative location constraints, and expert logic mapping and
floorplanning to optimize performance of a given core instance in a given Xilinx FPGA
architecture.

Smart-1P technology benefits designers by providing the following features:

» Physical layout optimized for high performance

* Predictable performance and resource utilization

» Reduced power requirements achieved through compact design and interconnect
minimization

» Performance independent of target device size

» Ability to use multiple instances of the same core on the same device without
deterioration in performance

» Reduced compile time compared to competing architectures

* Ability to make design size and performance trade-offs

» Design flexibility

For each core it generates, the CORE Generator System produces an Electronic Data
Interchange Format (EDIF) netlist (EDN file), a Verilog™ template (VEO) file with a
Verilog (V) wrapper file, and/or a VHDL template (VHO) file with a VHDL (VHD)
wrapper file. It may also create one or more NGC and NDF files. NGC files are produced
for certain cores only.

14

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

CORE Version Management ST XILINX®

The Electronic Data Netlist (EDN) and NGC files contain the information required to
implement the module in a Xilinx® FPGA. Since NGC files are in binary format, ASCII
NDF files may also be produced to communicate resource and timing information for
NGC files to 3rd party synthesis tools. The ASY and XSF symbol information files allow
you to integrate the CORE Generator™ module into a schematic design for ISE (using ECS)
or for third party schematic capture tools. VEO and VHO template files contain code that
can be used as a model for instantiating a CORE Generator module in a Verilog™ or VHDL
design. Finally, V and VHD wrapper files are provided to support functional simulation.
These files contain simulation model customization data that is passed to a parameterized
simulation model for the core. In the case of Verilog designs, the V wrapper file also
provides the port information required to integrate the core into a Verilog design for
synthesis.

Note: The V and VHD wrapper files generated by CORE Generator cores are provided mainly to
support simulation and are not synthesizable.

Figure 1-1 shows the complete CORE Generator design flow. The grayed areas in the figure
indicate the portions of the design flow directly associated with the CORE Generator. The
left-side gray area shows the EDN, VEO, VHO, and schematic symbol files produced by the
CORE Generator System. NGC and NDF files may also be produced for some cores. The
right-side gray area shows the XilinxCoreLib and <Vendor>CoreLib source libraries that
are created or updated during CORE Generator and IP module update installation. These
libraries contain the behavioral simulation models for the CORE Generator cores.

Verilog & VHDL HDL
Instantiation Test Bench

HDL Editor | toder VHDL

VEQ Verilog
VHDL -
veriog Synthesizer (' eor)

[
-> Simulation

15

CORE Generator

XilinxCoreLib

CORE
Generator

<Vendor> CoreLib

ic Editor EDIF
Timing Functional
Simulation

Flow

-G
VITAL & Verilog
-

VITAL, Verilog,
Gate-level

Flow e i Tools |

VHDL
- Verilog

X9832

Figure 1-1: CORE Generator Design Flow

CORE Version Management

The CORE Generator is capable of handling multiple versions of any core or core
customizer. The ability to generate new versions of a core while continuing to maintain
existing versions in a design allows you to add newer cores with new functionality without
disrupting the rest of the design. IP providers can also make fixes in an existing core and
publish the fixes in a new version without requiring designers to use the newer version.

Each project maintains a list of cores visible to the project, each with its own version
number. The cores available to the current project are displayed in the right hand panel of
the main CORE Generator window and are specific to that project. This listing can be
customized by the designer. When a new project is created, the latest versions of all
installed cores are made visible to that project.

CORE Generator Guide

www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 1: Introduction

By default, only one version of each core is visible at any one time within a project,
however multiple versions of the same core can also be made available to a project by
modifying the Cores Catalog display. All cores residing in the repository are also available
through batch mode.

Obsolete and Removed Cores

Some IP cores and versions of cores previously marked “To Be Obsoleted” have been
removed in the 6.1i release of the CORE Generator™. This includes all XC4000 and
Spartan™ cores and selected older versions of other IP.

If you need to generate or recustomize one of the removed cores, you must use the 4.2i
software. A complete list of removed cores and versions of cores is available at
http://www.xilinx.com/ipcenter/coregen/removed cores/index.htm.

16

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com/ipcenter/coregen/removed_cores/index.htm
http://www.xilinx.com

SXILINX®

Getting Started

Chapter 2

This chapter describes how to start and exit the CORE Generator™. It also explains the

basic elements and operations of the CORE Generator interface.
The chapter contains the following sections:

» “System Requirements and Installation Information”

e “Starting the CORE Generator”

e “Command Line Options”

e “Using the Interface”

« “Additional Resources”

System Requirements and Installation Information

The CORE Generator is installed as part of the ISE 6.1i software from the ISE 6.1i main

Xilinx® software release CDs.

The required environment variable settings are:

» XILINX variable: Set this to your Xilinx installation directory.

* PATH variable: Add $XILINX/bin/<platform> or %XILINX%/bin/<platform>

(depending on platform) to your PATH variable.

Adobe Acrobat™ v 4.05 or later is needed to launch and view the core data sheets.

Some cores may require more memory than the amount specified for a particular target
FPGA device in the ISE Release Notes and Installation Guide. See the data sheets for

individual cores to find their memory requirements.

For Mentor Graphics™ eProduct™ (formerly Innoveda™) users, you can invoke the
CORE Generator System interface (ePDCore) from within eProduct. This requires that both
eProduct and the Xilinx implementation Tools be set up on your system. Please refer to
Answer Record #11683 at the Answers Search web page for details on this interface.

See the ISE Tutorial or ISE Release Notes and Installation Guide for additional information on
system requirements and installation instructions for the Xilinx software.

CORE Generator Guide www.xilinx.com
1-800-255-7778

17

http://www.xilinx.com
http://www.support.xilinx.com/support/searchtd.htm

S XILINX® Chapter 2: Getting Started

Starting the CORE Generator

The CORE Generator™ runs on PCs and workstations. You can start the CORE Generator
from the installed ISE 6.1i software.

Starting the CORE Generator From the Windows Environment

To start the CORE Generator from your Windows® environment, select Start - Programs
- Xilinx ISE6 — Accessories — CORE Generator System. You can also start the CORE
Generator from within Xilinx® ISE (see “Starting the CORE Generator from Xilinx ISE”) or
from the EDA environments of Windows-based EDA tools. For example, in Innoveda™
eProduct™ v2.x DxDesigner™, you can create a new schematic, then click the Xilinx menu
in Viewdraw®.

On a PC, you can also start the CORE Generator from a command prompt. To start the
CORE Generator from a command prompt, select Start — Run in Windows. At the command
prompt, type cor egen.

Starting the CORE Generator From the UNIX Workstation Environment
At a UNIX shell prompt, type cor egen. This starts the CORE Generator System.

Starting the CORE Generator from Xilinx ISE

The CORE Generator can be opened from within Project Navigator in these ways:

« Ifyou have added a core to an ISE project, you can then open the CORE Generator
GUI from within the ISE Project Navigator. Project Navigator will runona PC or a
UNIX workstation.

To open the CORE Generator GUI from within Xilinx ISE:
In Project Navigator, select an IP core name in the Sources in Project window.

b. Click the "+" icon next to the Coregen process in the Processes for Current
Source window.

The Manage Cores process shows in the processes window.
c. Double-click on Manage Cores.
The CORE Generator window displays.

* A number of CORE Generator operations can be performed within Project Navigator
without opening the CORE Generator window. These operations are described in
“Performing CORE Generator Operations in Xilinx ISE” in Chapter 3.

18 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Starting the CORE Generator

$7XILINX°

Setting Preferences

Your preferences are set through the Preference Options dialog box (see Figure 2-1), which
is opened by selecting File — Preferences. Preferences are maintained on a per user basis.

Preference Options x|

mumber of projects to keep |8

Laocation of Yeb Browser [ScapelCammunicatonPrograminetscape. exe Browse.

U

Laocation of POF Yiewer 1 Files\wdobevdcrobat 5.00crobatiAcrobat exe Browze...

¥ Use Proxy
Proxy Host jimmyjoe
Praxy Part 772

[~ Automatically apen last praject

[Automatically overwtite output files

[~ Only display supported cores for selected target architecture
[” Display ohsolete cores

[T Close IP Customization Dialog after Generation

(0]54 I Cancel Defaults

Figure 2-1: Preference Options Dialog Box

The location at which preferences are saved on various platforms is as follows:

« Windows® — Preferences are stored in the Windows registry.

« UNIX® workstation — Preferences are stored in your home directory in the
.coregen.prf file.

For information about how to set preferences, see “Setting Preferences” in Chapter 3.

CORE Generator Guide

www.xilinx.com
1-800-255-7778

19

http://www.xilinx.com

S XILINX® Chapter 2: Getting Started

Command Line Options

The CORE Generator™ System is invoked in batch mode as follows:

coregen —b <command_fil e_nanme> —p <proj ect_pat h>

Table 2-1: Command Line Options

Option Definition

-b <command_fil e_name> Invokes the CORE Generator in batch
mode and the name of the command file
that should be executed during the batch
mode run. The command_file_name
argument specifies the path to the
command file to be executed.

XCO files are commonly specified as the
argument to the -b option, but you can
specify any file containing valid CORE
Generator commands.

-i <coregen_ini _file_name> When the -i option is used, the CORE
Generator looks for the specified INI file in
the current working directory if no path is
specified. If a different INI profile is
required, then the path can be explicitly
specified using either an explicit or relative
path name. The coregen_ini_file_name is the
path to the CORE Generator INI file to be
loaded.

If the -i option is not specified, the CORE
Generator System looks for an INI profile
in the current working directory by
default.

-p <project_pat h> Specifies the CORE Generator project
directory. The project_path argument is the
path to the desired CORE Generator
Project. This path can be specified relative
to the CORE Generator startup directory.

-q <pol l'ing_dir_path> This is an option for third party tools that
call the CORE Generator System in polling
mode. Do not use in batch mode. The
polling_dir_path supplied is the path to the
polling directory where the polling mode
communication files are written.

20 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Command Line Options

$7XILINX°

Table 2-1:

Command Line Options

Option

Definition

-intstyle <ise | xflow| silent>

Determines the integration style in which
the CORE Generator™ should run. The

i se and xf | owarguments direct the
CORE Generator to run in a mode
compatible with ISE or XFLOW, with
limited messaging and application
identification output. However, in the 6.1i
release this behavior has not been
implemented, so there is no difference
between the default operation of CORE
Generator and the operation when
invoked with-i ntstyl e i seor
-intstyle xflowThesil ent
argument opens the CORE Generator GUI
without displaying a splash screen.

-h Displays the CORE Generator batch mode
command line help and version
information.

-d Invokes CORE Generator in debug mode.

Directs the CORE Generator to generate
verbose runtime messaging.

CORE Generator Guide

www.xilinx.com

1-800-255-7778

21

http://www.xilinx.com

S XILINX® Chapter 2: Getting Started

Using the Interface

This section describes the CORE Generator™ graphical user interface and how to use it.

Main Window

This section describes the CORE Generator main window (shown following).

File " Project Core Tools| Help

0O & | 0urmntijettllH:MIinx_prujecmﬂain_r:um ~] | % B |@| (=
View Catalog: |by Function + =]
arget Family. \§ virtex2

ents of:

Digital Signal Processing bl Name Type | version [W\s ‘%Hﬂ || statls
__| Building Blocks .
e *
4 Corelators =l Bit Correlator + pegdC 20 * 9 *
__| Demodulation
+—__| Filters
¥ I Imane Proreszinn _l:‘
4| | »
Core Name Wersion Farnily Generated| J
ace Accurmulator E.0 ﬂ May 21, 2003
adderg Adder Subftracter 6.0 '\¥ May 21, 2003
hinana Binary Counter 6.0 \# May 21, 2003

All runtime messages will be recorded in Clcoregen.log
Set current Project to Hiwxline_projectumain_cores

| Ll

1. Menu Bar

2. View Catalog Toolbar

3. and 4. Cores Catalog Browser
5. Standard Toolbar

6. Generated Modules Window

7. Console Window

22 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Using the Interface

$7XILINX°

Menu Bar

The menu bar is located under the window’s title bar (which says Xilinx CORE
Generator).

ﬂXilinx CORE Generator
File Project Core Tools Help

Figure 2-2: Menu Bar Selections

You can select menu commands with the mouse or the keyboard. With the mouse, click the
left mouse button on the command. With the keyboard, press the Alt key and type in the
letter underlined in the menu for that command.

Some menu commands include an ellipsis (...). When you select one of these commands, a
dialog box appears.

Standard Toolbar

The Standard toolbar contains commands to perform these common operations on your
designs:

» Creating a new project

» Opening an existing project

e Selecting the current project

e Customizing a core

* Viewing the data sheet for a core

» Recustomizing or regenerating a core

D = | Current Project: |Hwilinkg_projectimain_cores LI | Egr | Qiﬂ =

Figure 2-3: Standard Toolbar

View Catalog Toolbar

The View Catalog toolbar allows you to choose how the available cores are displayed in the
CORE Generator™ window.

View Catalog: [by Function =]

Figure 2-4: View Catalog Toolbar

Cores can be displayed in the following ways:
* by Function (default)
Displays the cores in folders, sorted according to function.
* Alphabetically
Displays the cores in alphabetical order.
* by Vendor
Displays the cores by vendor (IP provider).

CORE Generator Guide

www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 2: Getting Started

e by Family
Displays the cores by device family.

* by Type
Displays separate listings for LogiCORE™ cores and Reference Designs
Cores Catalog Browser

The Cores Catalog Browser displays the cores that can be customized and included in your
CORE Generator™ project.

V\ewCatang:Iby Function 'I

|Target Famity: Wy Virex Contents of: hMemories & Storage Elements »FIFOs
|_| Basic Elements Marme | Type | Version |\,|§§%|\§|ﬂ|§?é| Vendor Status
Communication & Metwarkin = —
j Digital Signal Processing 4 Asynchranous FIFQ WgiCFE 40 ¢ ¢+ @ Hiling, Ine.
Synchronous FIFO glCFE 30 LI B iling, Ine.

|1 Math Functions

| | Mernaries & Starage Elements

-] CAMS

-4 FIFGs

~- | RAMs & ROMs

| | Microprocessors, Controllers & Peripherals

| | ProtoType & Development Hardware Products
| | Speech & Audio Processing

| | Standard Bus Interfaces

| | Video & Image Processing

AW

Figure 2-5: Cores Catalog Browser

The left hand portion of the Cores Catalog Browser, the Core Browser Navigation Panel,
contains a set of folders arranged hierarchically. The folders displayed in the Core Browser
Navigation Panel can be organized by core Function, by Type (LogiCORE or Reference
Design), by Vendor (IP provider), by device Family, or Alphabetically (see “View Catalog
Toolbar™).

The right hand portion of the Cores Catalog Browser, the Core Browser Contents Panel,
displays the selection of core customizers within the folder selected in the Core Browser
Navigation Panel. In the Core Browser Contents Panel you can select a core to customize it,
view its data sheet, or view version information for it.

For a complete description of the Cores Catalog Browser, see “Using the Cores Catalog
Browser” in Chapter 3 and “Configuring the Cores Catalog Browser” in Chapter 3.

Generated Modules Window

The Generated Modules window displays the Component Name, Core Name, Version,
Family, Vendor and date generated of each core generated.

Generated Modules:

Compaonent Mame | Core Marne | version | Farnily | vendor Generated
accl Accumulator a0 v Hilinx, Inc. May 1, 2002
binary Binary Courter 50 v siling, ne. Apr 30, 2002

Figure 2-6: Generated Modules Window

24

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Using the Interface

$7XILINX°

Console Window

The Console Window displays commands and responses. All error messages, warnings,
and command responses are written to the Console Window.

Preparing to elaborate core
Elabarating the module...

Set current Project to Hicorsgen_projectsicorasi il
)

The Xilink LogiCORE Binary Counter creates up counters, down counters, and upidown counters LS

Figure 2-7: Console Window

Use the scroll bar located to the right of the console window to view all the commands and
responses recorded during an editing session. The Console Window can be resized to show
more lines of messaging at once. Move your mouse anywhere on the upper border of this
window until the cursor turns into a two-headed arrow, then resize the window as desired.

Using Dialog Boxes

Many menu commands display dialog boxes in which you can enter information and set

options.

Using Common Fields

The fields shown in the following table are common to most dialog boxes.

Table 2-2: Common Dialog Box Fields

Dialog Box Field

Function

OK

Closes the dialog box and implements the intended action
according to the settings in the dialog box.

Dismiss

Dismisses the core customization dialog when you are finished
customizing cores with that GUI.

Apply

Implements the intended action.

Cancel

Closes the dialog box.

Select

Displays various Target architectures.

Set

Displays True, False, Default option for the Overwrite Files
category.

Reset

Changes all settings back to their default values.

Browse Buttons

Many dialog boxes contain browse buttons to allow you to navigate through your
directory structure to find a particular file or to save a file to a specific location.

CORE Generator Guide

www.xilinx.com
1-800-255-7778

25

http://www.xilinx.com

$7 XILINX°

Chapter 2: Getting Started

Additional Resources

The following section details additional online documentation resources and how to access
the information.

Links to the IP Center are available from the CORE Generator™ Help Menu with the
following path:

Help — Help on the Web — IP Center
Other options available from the Help on the Web menu are links to these locations:

* The CORE Generator Examples web page
+ Xilinx® Support and Services
* The main Xilinx corporate web page at www.xilinx.com

26

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Additional Resources

SUXILINX®

Accessing Core Data Sheets

To view the data sheet for a core:

1. Select a core by clicking the name of the core in the Core Browser Contents Panel.
2. Select Core — Data Sheet or click the Data Sheet button on the standard toolbar.

The Acrobat™ Reader displays the data sheet.

Adohe Acrobat - [accum. pdf]

] File Edit

Document

Tools

View Window Help

=10l |
== x|

Ne@Hs @ r e DEA| G 68RO

He@seD |k~ s LT

L] |

[Bookmarks ™ijs aps s »
-] Accumulator ¥5.0 —
[Features

[Functional Descripti
[Pinaut

] CORE Generator Par:
] Power On Conditions
[] 5ee the FD-based Re
] Core Resource Utilizz
L[| Parameter Values in 1

5 b
&qjc Q\’Rfi—_ Accumulator V6.0
5l
0
October 4, 2001 Product Specication
- Functional Description
i XILI&XE The Accumulator module can penerate adder-bazed, sub.
- based and based
Hlim Inc. operating on signed or unsigned data. Input dat & pro-
2100 Logic Drive v'lhrlrmPnn!-!_Il npn'nnal_;.ﬂn Port B value can be set

San Jose, CA 85124

Fhone: +1 40888077

Foc +140B-585-T114

URL: wwswocding. comiipcanter
Suppart: support xilime com

Features

+ Dropein madhule for Vitax™, Virtex ™-E, Virex™l,
Virkex V- Pro, Spartan™.Il, and Spartan ™-IE FPGAs

+ Generates Add, Subtract and Add‘Subtract-based
accumulators

+ Supports twa's complemant signed and unsigned

operations

Supports inputs ranging from 1 1o 256 bits wide

Supports ouputs rnging from 1 ta 258 bis wide

Usar programmable faedback scaling

Optional ook anable, asynchronous and sychrancus

conkrols

Optional noaregistarad cutput

Optional Bypazs {Load) capabifty

Uses relationally placed macro {RPM) mapping and

R

e

pesformance
+ Incorporatas Hilime SmartIP™ technology for tmost
s Sl Smar :

+ Foruse with W4.1i and later of the Xilinx CORE
Generator System

%0 a constant. Optional input, and
#iow outputs are available. Cusputs can be registered orly

ar bath rogistered and non-ragistored. Options are alsc
provided for Glock Enable, Asynchronaus Set, Clear,
and Init, and Synchroncus Set, Glear and Init. An
‘apticnal Bypass capability is also provided which can load
the valus on Port B diractly inko th jmter, The out-
fut of the accumudator can also by saturated. The modue
can opticnally be generated 2= a Relational Placed Macre
{RPM) or ax unplaced logic. When an RPM i penerated,
the logic is placedin a calumn {RPM) or as unplaced logic.

am

Figure 4: Gore Schematic Symbol

(2 =S = |

Figure 2-8: CORE Generator Data Sheet

You can also access a data sheet by right clicking a core in the Core Browser Contents
Panel. Data sheets can be viewed for any core listed in the Core Browser Contents Panel
whether they are grayed out or not.

CORE Generator Guide

www.xilinx.com
1-800-255-7778

27

http://www.xilinx.com

S XILINX® Chapter 2: Getting Started

28 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

SXILINX®

Chapter 3

Using the CORE Generator

This chapter explains the major functions a designer performs when using the CORE
Generator™. The chapter contains the following sections:

“Using the Cores Catalog Browser”

“Using the Generated Modules Window”
“Accessing New and Updated Cores”

“Working With Licensed Cores”

“Creating a New Project”

“Opening an Existing Project”

“Changing Project Options”

“Creating a Customized Core”

“Recustomizing a Core”

“Regenerating a Core”

“Selecting Target XILINX FPGA Family Options”
“Using the Web Browser and the PDF Viewer”
“Setting Preferences”

“CORE Generator Data Sheets”

“Accessing Cores”

“Configuring the Cores Catalog Browser”
“Copying a Project”

“Input and Output Files”

“Using Core Customization GUIs”

“Generating Cores in Batch Mode”

“Performing CORE Generator Operations in Xilinx ISE”
“Integrating CORE Generator into Applications”
“ASY and XSF Symbol Information Files”

Using the Cores Catalog Browser

The Cores Catalog Browser is located in the upper panel of the CORE Generator main GUI.
Cores that fall into particular functional categories are grouped into folders in the Cores
Catalog Browser to assist you in locating the core appropriate to your needs. The left hand
panel of the Cores Catalog Browser, the Core Browser Navigation Panel, allows you to
browse through these folders. To select a folder, click once on the folder name in the Core

CORE Generator Guide

www.xilinx.com 29
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

Browser Navigation Panel. To expand a folder, double-click the folder icon to the left of the
folder name. To close a folder, double-click the open folder icon. Some folders have a + icon
or a—icon to their left. The + indicates the folder has subfolders that are not displayed, and
the - indicates the subfolders are displayed. You can open or close the folder with a single
click on those icons.

V\ewCatang:Iby Function 'I

|Target Famity: Wy Virex Contents of: Memories & Storage Elements = FIFOs
|_| Basic Elements Marne | Type | Version |\,| 'ﬁl\{}lﬂlljﬁl Vendor Status
Communication & Netwarkin - —
j Digital Signal Proceszing 9 Asynchronous FIFQ wlCEFEE 40 % 4 @ Hilim, Ine.
Synchronous FIFD WiCERE 30 LN B Hiling, Ine

| 1 Math Functions
|1 Mernoties & Storage Elements
Pl] CAMs
= _4FIFOs
s | RAMS & ROMs
|1 Microprocessors, Controllers & Peripherals
| | ProtoType & Development Hardware Products
| | 5Speech & Audio Processing
| | Standard Bus Interfaces
|1 video & Image Processing

rs, 4

Figure 3-1: Cores Catalog Browser

The cores in the selected folder display in the right hand panel of the Cores Catalog
Browser, the Core Browser Contents Panel. Within a folder, cores are listed alphabetically
by name and also have type, version, family and vendor information displayed in
columns.

Core status information is displayed in the far right column, and may include one of the
following icons:

Icon Meaning

Core is scheduled to be obsoleted.

@ If you don’t want to view the cores which are scheduled to be obsoleted,
a global preference (Display obsolete cores) allows you to select
whether these cores are displayed or not (see “Setting Preferences”).

g Core requires an additional license before it can be used.

View Catalog: |by Function -

[Target Famihe Wy “irex IContents of: Mermories & Storage Elements = RAMs & ROMs
|) Basic Elements Mame | Type | Version |\,|!3%|\3|€|&?3| vendar Status
Communication & Metwarkin = -
j Digital Signal Processing d Distributed Memory IR 5 & b iling, Ine.
|1 Math Functions Dual Port Block Mermory RECTEE 10 + @ Hiling, Ine. @
R L I i
|) Memories & Storage Elements Dual Part Black Memaory Ingic: - 4.0 Hlin, Inc
] CAMs Single Part Block Memary m&_\ 1.0 + * iling, Ine. @
TAFIFOs Single Port Block Memory BHCTFE a0 LA 4 Hiling, Ine.

L4 RAMS & ROMs

| | Microprocessors, Controllers & Peripherals

| 1 ProtoType & Development Hardware Products
| | Speech & Audio Processing

| | Standard Bus Interfaces

| |%ideo &Image Processing

o

Figure 3-2: Example of Cores Catalog with Obsoleted Cores

Some cores in the Core Browser Contents Panel may be grayed out. This means that these
cores are not available for the currently selected Xilinx® FPGA family.

30

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Using the Generated Modules Window ST XILINX®

Sorting the Catalog

You can sort the cores in the Cores Browser Navigation Panel in a number of different ways
by setting the View Catalog setting at the top of the Cores Catalog Browser. Cores may be
listed by Function, Alphabetically, by Vendor (IP provider), by Family or by Type
(LogiCORE™ or Reference Design).

Adjusting Columns and Panels

The size of each column within the Cores Catalog Browser can be adjusted by moving the
separators between the column headings. Panels can be resized in a similar way.

A panel will have a vertical or horizontal scroll bar (or both) to allow navigation if the
information displayed in the panel is larger than the current panel size.

Using the Generated Modules Window

Cores that have been generated in a project are displayed directly under the Cores Catalog
Browser in the Generated Modules window. When you double click a core in this panel,
you can perform either of these functions:

* Recustomize — Allows you to call up a previously generated core with the original
parameters used to generate it, then modify these parameters and generate a new
version of the core. You can recustomize under the original project settings or under
the current project settings. See “Recustomizing a Core”.

* Regenerate — Allows you to regenerate a core to create a different set of output
products. You can regenerate under the original project settings or under the current
project settings. See “Regenerating a Core”.

Accessing New and Updated Cores

Up to date information on the full range of Xilinx® IP Solutions is available on the Xilinx IP
Center page at http://www.xilinx.com/ipcenter.

On the IP Center page you can find information on the latest general release IP updates
from Xilinx (downloadable free of charge), as well as information on more complex system
level IP which you can evaluate and purchase. Also available are links to Reference Design
resources and third party consultants.

The IP Center web page is updated on a regular basis, so be sure to review it before starting
a new design to make sure you are aware of the latest IP offerings available from Xilinx.

CORE Generator Guide www.xilinx.com 31
1-800-255-7778

http://www.xilinx.com/ipcenter
http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

Figure 3-3 shows how you can access the IP Center page directly from the Help menu in
the CORE Generator™ GUI.

ﬂXilinx CORE Generator
File Project Core Tools | Help

0 g,”| CurrentPruject:[Online Documentation ¥ [=1 | = =1 | fn

i - | Help on the Weh] Coregen Examples
View Catalog: Iby_Functmn About CORE Generatar... IF Center
Target Famihe Wi Virtex2 Contents Support affd Services prs &
: Basic Elements - Hilink Hame PagE
=] Comparatars - ! —
: e
-] Counters Binary Decoder gl

- _4 Encoders & Decoders
-1 Format Conversions
-1 Logic Gates & Buffers

Figure 3-3: Navigating to the Xilinx IP Center from the CORE Generator Window

Installing New Cores

When you download new cores and new versions of existing cores from the IP Center, they
are installed in the CORE Generator’s built-in IP repository hierarchy but are not visible to
existing projects. This capability exists to insulate existing projects from updates to the
cores used in that project. Any changes in the functionality associated with new cores does
not impact existing projects since new cores are not automatically updated for existing
projects. The multiple version support capability exists to allow a new core or new version
of an existing core to be made available in an existing project.

The direct link to new Xilinx® standard release cores and their installation instructions is
available on the Xilinx website at this location:

http://www.xilinx.com/ipcenter/coregen/updates.htm.

After new cores have been added to your CORE Generator IP repository and a project is
opened, a dialog box appears, asking whether you wish to update your project’s list of
visible cores (see Figure 3-6). You may choose:

« Al
Only the latest version of all cores will be visible in the Cores Catalog display.
* New
The latest version of all new cores will be visible in the Cores Catalog display.
e Custom
Allows you to customize which cores are made visible in the Cores Catalog display.
* None
None of the new cores will be visible in the Cores Catalog display.

32

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com/ipcenter/coregen/updates.htm
http://www.xilinx.com

Working With Licensed Cores ST XILINX®

Working With Licensed Cores

In the 6.1i release, CORE Generator™ LogiCORE™ cores which require an additional
license may be included in the release CD, or added via subsequent IP Updates. There are
two types of licenses that may be required for these types of cores:

* Full System Hardware Evaluation licenses
* Full Release IP licenses

Full System Hardware Evaluation licenses are offered on some of the higher complexity,
system level cores. This license enables you to perform a Full System Hardware Evaluation
of the core. A core which supports Full System Hardware Evaluation allows you to:

* Integrate the core into the rest of your design

» Process the design through map, place and route

* Generate a bitstream

« Program the design into your target Xilinx® FPGA

* Perform timing simulation and static timing analysis

* Review all documentation found in the full product offering

If you generate a bitstream and then program an FPGA using a core that has a Full System
Evaluation license, the core will stop working in the programmed device after 2-8 hours,
depending on the core. To get the device working again you must reload the bitstream,
reprogramming the device.

Full Release IP licenses allow you to access the full functionality of the official released
version of a licensed core.

In the CORE Generator, if you double click on a core in the Cores Catalog Browser that
requires a license for evaluation or full functionality, a message box for this core will
indicate that you can only generate functional models for the core, unless you obtain an
additional license.

Licenses for evaluation and full functionality access can be requested from the product
lounge for the core on Xilinx’s IP Center web page at this location:

http://www.xilinx.com/ipcenter

To obtain a license you will typically need to register for the lounge and fill out an online
request form. For full release core licenses you will also need to provide a serial number.
Consult the respective product lounge in the IP Center for specific instructions, and follow
the instructions for installing the license. Once you have done this, you should be able to
use the core in either evaluation or full release mode.

Creating a New Project

This section describes how to create a new project. When a new project is created the cores
displayed in the CORE Generator System’s main window are the latest versions of the
cores.

To create a new project in CORE Generator:

1. Select File —» New Project or click the New Project toolbar button.

CORE Generator Guide

www.xilinx.com 33
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/ipcenter

$7 XILINX°

Chapter 3: Using the CORE Generator

Mew Project x|
Directory | | Browse. .. |
Qutput Options Design Entry
Select aptions by
¥ b " Schematic " Mentar Graphics (HDL)
& Flow Yendar
& yWHOL " ISE
¢ Output Products
" Verilog " Innoveda
" Synopsys
 Synplicity
& Other
Target Architecture
|Vinex2 Select |
Overwrite Files
IFaIse Set | Metlist Bus Format IElﬂn:m>VI

The New Project dialog box appears, as shown in the following figure.

DK I Cancel |

Figure 3-4: New Project Dialog Box

In the New Project dialog box, type the path to the new project directory in the
Directory text field

OR
Click the Browse button and navigate to the project directory.

Select your project options as directed in “Changing Project Options”.

Note: You cannot create a new CORE Generator™ project targeted to an ISE flow. If you select
ISE in the New Project dialog box, you will receive an error message directing you to create a
new project within ISE instead of within the CORE Generator.

Click OK.
The Xilinx® CORE Generator System initializes the new project. This initialization may
take several seconds. A coregen.prj file is written to the new project directory. The

coregen.pr;j file contains a record of all installed cores at the time the project was
created and their latest versions.

Set the rest of your project options as directed in “Changing Project Options”.

34

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Opening an Existing Project ST XILINX®

Opening an Existing Project
To open an existing project from within CORE Generator™:

1. Select File — Open Project or click the Open toolbar button.

Open Project x|

Directory Hcoregen_projectsicores? Browse. . |

Recent Projects:

Hicoregen_projectsicaresy
Hicoregen_projectsicares
Hicoregen_projectsicares3
Hicoregen_projectsicaress

The Open project box displays.

¥ Always Open Last Project

[o]24 I Cancel

Figure 3-5: Open Project Box

2. Inthe Open Project dialog box, select a project from the Recent Projects list in the
dialog box

OR
Click the Browse button and navigate to the project directory.

You may also place a check mark in the Always Open Last Project check box in the
following figure. If you select this box, the CORE Generator System bypasses the Open
Project dialog box at startup, and opens the last open project. If you deselect the Always
Open Last Project check box, CORE Generator prompts you for a project at startup by
displaying the Open Project dialog box.

3. Click OK.

If the project has been locked by another user, the CORE Generator gives you the
option of Closing the project, displaying More Info about the project lock, or Removing
the lock. Displaying More Info gives you more information on who has locked the
project and also gives you the option of removing the lock.

If new IP have been added to the CORE Generator repository since you last accessed
the project, the following dialog box appears.

CORE Generator Guide www.xilinx.com 35
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

Project Update x|

@ The IP Care repositories have been updated since this project
was last saved. Please select a project update aption below
to resynchronize this project with the IP Caore repositaries.

"All" sets this project to use the latest version of all cores.
"Mew" adds all new cores to this project and sets them active.
"Custom” allows you to pick which cores to make active.
"Mone” leaves all active cores inthe project the same.

e Custom... Mone

Figure 3-6: Project Update Dialog Box

The dialog box presents options for updating the list of visible cores in the CORES
Catalog for the project. The selections in this dialog box are described in “Installing
New Cores”.

Changing Project Options

To change Project Options:

1.

For an existing project, select Project — Project Options. This opens the Project Options
dialog box for the project.

For a new project, a similar dialog box displays. The dialog box is titled New Project,
and has an additional field at the top allowing you to specify the project location.

Under the Output Options panel, select either the Flow Vendor or Output Products
view. The Flow Vendor view allows you to specify your Design Entry flow (Schematic,
VHDL, or Verilog) and Design Entry vendor, and then determines the appropriate
output products for the cores you generate automatically.

The Output Products view is for more advanced users. This view allows you to
explicitly specify the output products you wish to be generated for each core you
create.

Modify the project options in the Project Options dialog box.

+ Project options for the Flow Vendor view are described in “Output Options —
Flow Vendor”.

+ Project options for the Output Products view are described in “Output Options —
Output Products”.

When you have finished modifying the project options, click OK.

Note: Changing the project options only affects new cores that you generate. Cores created
before making the project changes still reflect the old options. Regenerate any cores that need
to inherit the new project options.

36

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Changing Project Options ST XILINX®

Output Options — Flow Vendor

After you have selected the Flow Vendor view, you can then set the Target Architecture,
Overwrite Files option, the Design Entry flow and Design Entry vendor.

Project Options ﬂ
Qutput Options Cesign Entry
Select opti by
BIBCL OpHIONS Y_ " Schematic " Mentor Graphics (HOL)
& YHOL " |SE
" Cutput Products
 Verilag " Innoveda
% Synopsys
" Synplicity
" Cther

Target Architecture

IVir‘tEXE Select | %

Oyerwrite Files

IFalse Set | Metlist Bus Format |B<n:m>'|
Ok I Cancel |

Figure 3-7: Project Options — Flow Vendor

Target Architecture

Select your target architecture from this list:

Table 3-1: Target Architecture

Design Specification
Virtex Virtex, Virtexg
Spartan?2 Spartan2, Spartan2E
Virtex2 Virtex2
Virtex2P Virtex2P
Spartan3 Spartan3
CORE Generator Guide www.Xxilinx.com 37

1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: Using the CORE Generator

Overwrite Files

You can select these options for Overwrite Files:

e True

Any pre-existing files associated with a previously generated core are overwritten by
default with no warning when a new core of the same name is generated.

* False
The CORE Generator™ prompts you for approval before overwriting existing files.

 Default

The Overwrite Files behavior follows the global preference setting specified for all
projects as set in Preference Options dialog box (accessed by selecting File —
Preferences).

Design Entry

Specify your Electronic Design Automation (EDA) flow (Schematic, VHDL or Verilog™)
and design entry vendor.

If you choose Schematic as the design flow, the following outputs are generated
depending on your chosen vendor:

+ Cadence
The CORE Generator produces a Cadence™ compatible EDN file.

« |ISE

The CORE Generator produces an ASCII symbol (ASY) file, an ECS symbol (SYM) file
(for the Xilinx ECS schematic editor), and the underlying EDN netlist.

* Innoveda

When run standalone, the CORE Generator does not generate any schematic output if
you select Innoveda, however it does create an eProduct™ compatible EDN file. When
the CORE Generator is invoked through the Xilinx/Innoveda™ interface (ePDCore),
ePDCore automatically creates a .1 symbol file, which can be instantiated in a
Viewdraw schematic sheet. For more details on the Innoveda Xilinx™ flow, see
Answer Record #11683 at the Xilinx Answers Search web page.

* Mentor Graphics (Schematic)

The CORE Generator produces an XSF file to support symbol generation within the
Mentor™ Design Architect™ environment, and a Mentor compatible EDN netlist.

e Other

The CORE Generator produces an EDN netlist, with the Netlist Bus Format you
specify.

When you choose VHDL as the design flow, a VHO instantiation template file and a VHD
wrapper file are created. The VHO template file contains commented HDL example code
that can be used to instantiate a CORE Generator module in an HDL design. The VHD
wrapper file is used to support functional simulation of the core. Similarly if you choose
Verilog as the design flow, a VEO instantiation template file and V wrapper file are
created.

Note: If you select any vendor except Other, the CORE Generator automatically sets the Netlist
Bus Format setting in the output EDIF file to the correct value for that vendor. If you set the Design
Entry vendor to Other, you will also need to specify the Netlist Bus Format.

38 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com
http://www.support.xilinx.com/support/searchtd.htm

Changing Project Options

$7XILINX°

Netlist Bus Format

Sets the format in which bus signals are written in the output EDIF file. If you select Other

as your design entry vendor, you will have to set a Netlist Bus Format.

Bus format can be specified (and will be written into the EDIF file) in either of these ways:

* Asindividual bus bits. For these options, B represents the name of the bus and |
represents the bus index. Options are B<I>, B(l), B[l], and BI.

« Asasingle array. For these options, B represents the name of the bus and n:m
represent the range of the bus index. Options are B<n:m>, B(n:m), and B[n:m].

Design Flows Supported by the CORE Generator

The following table lists the design flows supported by the CORE Generator on a vendor

by vendor basis.

Table 3-2: Design Entry Vendors and Design Entry Flow Options

Schematic VHDL Verilog

Cadence™ X X
Innoveda™ X X
ISE X X
Mentor Graphics™ (HDL) X
Mentor Graphics (Schematic) X

Synopsys™ X X
Synplicity™ X X
Other X

CORE Generator Guide

www.xilinx.com
1-800-255-7778

39

http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

Output Options — Output Products

The Output Products option in the Project Options dialog is geared toward the more
advanced user. In addition to allowing you to select your target architecture and File
Overwrite options, it allows you to choose the exact output products you need more
precisely. It also supports some additional features such as formal verification outputs and
three special elaboration options.

Project Options

Qutput Options

Select options by
 Flow Vendor

Target Architecture

I\-fir‘[eﬂ Select |

Owerwrite Files

IFaIse Set |

Cutput Products

v Implementation Files

[~ ASY Symbol File

[wHDL Simulation Mocdel

[Verilog Simulation Model

[~ ®SF

[Black R ey e File ¢ hrmm)

Formal Verification
" Formality

" Verplex
& Mone

Elahoration Options
[" Generate netlistwrapper with 10 pads

[Remaove Placement Attributes

r Create MDF Synthesis
Cptimization Interface for NGC cores

IS T e |

TS T e |

X

Cadence

mMentor Graphics (HOL)
mentor Graphics (Schematich
ISE

Innoveda

Synopsys

Synplicity

Other

Metlist Bus Format: |B<n:m> 'l

Ok I Cancel |

Figure 3-8: Project Options — Output Products

Target Architecture

Select your target architecture from this list:

Table 3-3: Target Architecture

Design Specification
Virtex Virtex, VirtexE
Spartan?2 Spartan2, Spartan2E
Virtex2 Virtex2

Virtex2P Virtex2P

Spartan3 Spartan3

40

www.xilinx.com
1-800-255-7778

CORE Generator Guide

http://www.xilinx.com

Changing Project Options ST XILINX®

Overwrite Files

You can select these options for Overwrite Files:

e True

Any pre-existing files associated with a previously generated core are overwritten by
default with no warning when a new core of the same name is generated.

* False
The CORE Generator prompts you for approval before overwriting existing files.
* Default

The Overwrite Files behavior follows the global preference setting specified for all
projects as set in Preference Options dialog box (accessed by selecting File —
Preferences).

Output Products

When you select the Output Products view of the Project Options dialog, you can choose
from the following selections from the Output Products panel:

* ASY Symbol File

An ASCII symbol information file used by the ISE tools and some third party interface
tools to create a symbol representing the core.

* VHDL Simulation Model
Generates files for simulating a generated core in a VHDL simulation environment.
* Verilog Simulation Model
Generates files for simulating a generated core in a Verilog™ simulation environment.
e XSF
Symbol information file for Mentor.
* Block RAM Memory Map File (.bmm)

This option, which applies to Block Memory cores, is currently disabled and cannot
produce any BMM output files. This feature may be enabled in a future 6.1i IP update.

EDIF implementation files are always generated by default. For some cores, NGC files are
also generated.

The right hand panel of the Output Products dialog view lists these supported vendors:
 Cadence

* Mentor Graphics (HDL)

* Mentor Graphics (Schematic)

« ISE

* Innoveda

e Synopsys
e Synplicity
+ Other

Note: If you select any vendor except Other, the CORE Generator automatically sets the Netlist
Bus Format setting in the output EDIF file to the correct value for that vendor. If you set the Design
Entry vendor to Other, you will also need to specify the Netlist Bus Format (see “Netlist Bus Format”).

CORE Generator Guide www.xilinx.com 41
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

Formal Verification

There are three options to choose.

Formality

Generates a Verilog™ model called <module_name>_for.v to support formal
verification using the Formality™ tool from Synopsys™.

Verplex

Generates a Verilog model called <module_name>_for.v to support formal verification
using the Tuxedo-LEC™ Logic Equivalence Checker tool from Verplex.

None
No files are generated to support formal verification.

Elaboration Options

There are three options to choose.

Generate netlist wrapper with 10 pads

This option adds input pads and output pads to a core when the CORE Generator™
generates the core and writes out its EDIF implementation netlist. Use this file if you
want to process the core standalone all the way through place and route to get precise
timing and resource utilization information. You can do this without having to
interface to any design entry tool.

If Generate netlist wrapper with 10 pads is selected, the Core Generator creates an
additional file, a “padded” EDIF wrapper file. The padded EDIF file contains a
declaration of the core as a black box, with the ports connected to appropriate
Input/Ouput blocks.

For a core named corename the EDIF describing the core is generated as usual in a file
named corename.edn. The additional file generated when Generate netlist wrapper
with 10 pads is selected is named corename_padded.edn. The module defined in the
file is named corename_padded.

The corename_padded definition includes a black box instantiation of the core,
according to the definition in corename.edn. Each strand of each port on the core is
connected to an appropriate Input/Output Block (10B). Each IOB is connected to the
corresponding port strand on the corename_padded module.

IOBs are added according to these rules:

¢+ The IOB type connected to a port is shown in the following table:

Table 3-4: Port Connections for Generate netlist wrapper with 10 pads Option

Port Type I0B(s)
Output OBUF
Input Clock (Virtex™ derivatives) IBUFG connected to a BUFG
Input Clock (all other families) BUFG
All other Input Ports IBUF
Bidirectional IOBUF
42 www.xilinx.com CORE Generator Guide

1-800-255-7778

http://www.xilinx.com

Changing Project Options ST XILINX®

¢+ Aclock port is assumed if a port is named clk or g, or starts or ends with clk or
_ck.

+ |IPADs and OPADs are not added.

The following figure gives an example of the padded file generated for a Virtex™ core.

Padded Netlist (corename_padded.edn) for Virtex family

IBUF Core (Black Box defined
/ \ 3 in corename.edn)
A[2:0] IBUF {— Al2:0] OBUF
IBUE 0[2:0] H OBUF 1— 0[2:0]
CLK IBUEG CLK \— OBUF —/
X10007
Figure 3-9: Generate netlist wrapper with 10 pads Example
Padded files are generated for EDIF output only; they are not generated for VHDL and
Verilog output.
* Remove Placement Attributes
When selected, this option removes any RLOC and HU_SET attributes embedded in a
parameterized core before writing out its EDIF netlist.
The only EDIF netlists affected by this option are those that are generated by
parameterized CORE Generator cores. EDIF netlists for fixed netlist cores are not
affected by this option.
Note that this option does not determine whether RLOCs and HU_SETSs are generated
when a core is elaborated. The Remove Placement Attributes option simply prevents
RLOC and HU_SET values from being output to the EDIF netlist for a core by
removing them if they are present.
Some IP customization GUIs have a Create RPMs checkbox, which allows you to
enable or disable the creation of RLOCs and HU_SETs in the core you are configuring.
If the Remove Placement Attributes option is set, it overrides the Create RPMs
check box, and RLOC and HU_SET constraints will not appear in the EDIF netlists of
the cores for which Create RPMs was enabled.
» Create NDF Synthesis Optimization Interface for NGC cores

In prior releases of the ISE software, CORE Generator created a single flat structural
EDIF netlist with an .EDN extension for every IP core it generated. Third party
synthesis tools (for example, Mentor Graphics™ LeonardoSpectrum™) used this EDN
file to infer resources utilized by the core as well as rough timing information. The
synthesis tool used this information to optimize the elaboration of the surrounding
design logic.

CORE Generator Guide www.Xxilinx.com 43

1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

Starting with CORE Generator™ 4.2i IP Update #2, the logic implementation of certain
new CORE Generator IP is described by a combination of a top level EDN file plus one
or more NGC files. For third party synthesis tools to infer resource utilization and
timing from the NGC files associated with these new cores, you must enable the
Create NDF Synthesis Optimization Interface for NGC cores project option to
generate a new NDF format file for each NGC output file.

Refer to your synthesis tool documentation for information on support for this feature.

Netlist Bus Format

Sets the format in which bus signals are written in the output EDIF file. If you select Other
as your design entry vendor, you will have to set a Netlist Bus Format.

Bus format can be specified (and will be written into the EDIF file) in either of these ways:

As individual bus bits. For these options, B represents the name of the bus and |
represents the bus index. Options are B<I>, B(l), B[l], and BI.

As a single array. For these options, B represents the name of the bus and n:m
represent the range of the bus index. Options are B<n:m>, B(n:m), and B[n:m].

Creating a Customized Core

To customize a core and add it to your Core Generator project:

1.

Select the core in the Cores Catalog Browser.

For a description of how to use the Cores Catalog Browser to find and select a core, see
“Using the Cores Catalog Browser”.

Select Core — Customize or click the Customize toolbar button.

=4
A core customization GUI appears for the selected core.

In the core customization GUI, set customization options for the core.
Some notes about setting customization options:

+ Forinformation about the customization options, click the Data Sheet button in
the core customization GUI. The data sheet that appears explains all of the
options.

+ In some of the customization GUIs, you can click on a pin in the GUI’s symbol
drawing to enable the pin and set options related to the pin. See “Setting Options
Using the Core Symbol”.

+ To view Solution Records related to this core, select the Web Links tab in the core
customization GUI, then click Solution Records for this Core.

When you are finished setting customization options, click Generate.
The core is elaborated and it appears in the Generated Modules window.

Note: If you want to halt the elaboration before it is completed, click the Cancel button in the
Generating Core message box.

44

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Recustomizing a Core

$7XILINX°

If the CORE Generator™ System cannot generate all of the core’s output products, a
dialog box appears to indicate this fact. The dialog box contains a button allowing you
to view error and warning messages related to the problem.

If the Close IP Customization Dialog after Generation preference is set (see “Setting
Preferences”), the customization GUI will close automatically after the core is
generated. If the preference is not set, the customization GUI will remain open. To
close the GUI if it remains open, click Dismiss.

Recustomizing a Core

Often, it may be necessary to generate slightly different versions of the same core, or
modify a previously generated core. The Recustomize option allows you to do this by
preloading the parameter settings you originally specified when generating the core.

To recustomize a core:

1.

In the Generated Modules window, select the core to recustomize.

If you want to recustomize more than one core, you can make these extended
selections:

+ To select consecutive cores, select the first core, then hold the Shift key while you
select the last core.

+ To select cores that are not consecutive, select the first core, then hold the Ctrl key
while you select each additional core.

Click the Recustomize toolbar button (to recustomize under current project settings)

Select Core - Recustomize — Under original project settings or Under current project
settings.

OR

ﬂXilinx CORE Generator
File Project | Core Taools Help

[@| (o] SR en_projectsicores? LI |E£((=g
———— [atE Sheet..
Yiew Catalog:
9 | Recustomize] Under original project settings I
Target Family: Regenerate » Under current project settings fade E

Basic Eler Xilinx IP Wek Search... | Mame | Type |
Cormrmuni

Digital Signal Processing Eynchrr;:lnuus FII:ITI?O mgfzi
Math Functions SYNCnronous bogiCry

Memaoaries & Storage Elements

-4 FIFQg

| RAMs & ROMs

Microprocessors, Controllers & Peripherals
ProtoType & Development Hardware Products

Figure 3-10: Recustomize Menu

CORE Generator Guide

www.xilinx.com 45
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

You recustomize using one of these options:

¢ Under original project settings — The recustomized core is generated according to
the project settings recorded in the core’s XCO file when it was originally created,
and the current project property settings are ignored.

¢ Under current project settings — The recustomized core is generated according to
the current project settings.

In the core customization GUI for the first selected core, set customization options for
the core.

When you are finished setting customization options, click Generate.
The core is elaborated using the new customization settings.

If the CORE Generator™ System cannot generate all of the core’s output products, a
dialog box appears to indicate this fact. The dialog box contains a button allowing you
to view error and warning messages related to the problem.

If the Close IP Customization Dialog after Generation preference is set (see “Setting
Preferences”), the customization GUI will close automatically after the core is
generated. If the preference is not set, the customization GUI will remain open. To
close the GUI if it remains open, click Dismiss.

If you selected more than one core to recustomize, a core customization GUI will
appear for the next selected core as the customization GUI closes for the previous core.

If you have selected more than one core for recustomization, perform steps 3 and 4 for
each additional core.

Regenerating a Core

There may be situations where you may wish to regenerate a core in your project, either to
generate additional output products that were not previously specified or required, or to
retarget your core to a different Xilinx™ architecture. When you choose to regenerate a core,
the regenerated core is implemented using the same parameter values as specified
previously, but is regenerated with the new Project Options settings (including target
architecture).

To regenerate a core:

1.

In the Generated Modules window, select the core to regenerate.
If you want to regenerate more than one core, you can make these extended selections:

+ To select consecutive cores, select the first core, then hold the Shift key while you
select the last core.

+ To select cores that are not consecutive, select the first core, then hold the Ctrl key
while you select each additional core.

Click the Regenerate toolbar button (to regenerate under current project settings)

Select Core - Regenerate. — Under original project settings or Under current project
settings.

OR

46

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Selecting Target XILINX FPGA Family Options

$7XILINX°

ﬂ Kilink CORE Generator

File Froject | Core Tools Help

0O = | £ SIS e en_projectsicores? 7 | | =, (=0

——— [rata EHeet:..

Wiew Catalog:

. Recustomize 4

ITETQEt Family: | Regenerate » Under original project settings age E
Basic Eler wiline IP WWeh Search... Under current project settings a
CommunicaTon & et ORI L —
Digital Signal Processing ; Synchranous FIFO mc;‘:",? -

Asynchronous FIFO JoCEFE

Math Functions

_| Memaories & Storage Elements

----- L1 CANMs

----- _4 FIFOs

S RAMS & ROMs

Microprocessors, Controllers & Peripherals
FProtoType & Development Hardware Products

Figure 3-11: Regenerate Menu

You regenerate using one of these options:

¢ Under original project settings — The core is generated according to the project
settings recorded in the core’s XCO file when it was originally created, and the
current project property settings are ignored.

¢ Under current project settings — The core is generated according to the current
project settings.

The selected cores will be regenerated, one after another.

Selecting Target XILINX FPGA Family Options

The Xilinx CORE Generator™ System tailors your core to the selected Target Family
setting. All cores are optimized to the selected Xilinx architecture and do not work if
integrated into a design targeted to a different Xilinx FPGA family. For example, cores that
were targeted to the Spartan™ architecture when they were generated, will not work if
placed in a Virtex design. You need to select the Target Family based on the Xilinx
architecture that you are targeting. Changing architectures requires you to regenerate any
cores you have already created.

Using the Web Browser and the PDF Viewer

Another feature of the CORE Generator System is the ability to link to CORE Generator-
related sites on the Web. The CORE Generator System can also open a PDF viewer to read
core data sheets and user documents in PDF format.

Using links from the CORE Generator Help menu, you can click to these sites:

» The CORE Generator Examples page

* The Xilinx IP Center page
» The Xilinx Support and Services page

e The Xilinx home page

Refer to the following section on Setting Preferences for information on configuring CORE
Generator to invoke your preferred web browser and PDF viewer applications.

CORE Generator Guide

www.xilinx.com 47

1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Intellectual+Property
http://www.xilinx.com
http://support.xilinx.com/support/software/coregen/coregen-examples.htm

S XILINX® Chapter 3: Using the CORE Generator

Setting Preferences

Preferences are user-specific settings that apply globally to all of your projects. Preferences
include the following things.

* The location of your web browser and PDF viewer executables
* Proxy settings (if a proxy is used)

* File overwrite behavior

* Whether to always automatically open the last project or not

» Cores Catalog filtering behavior

* Whether a core customization GUI will close or remain open after a core is
customized.

To configure your CORE Generator™ preferences, select File —» Preferences. The
Preference Options dialog box appears.

Preference Options x|

Mumber of projects to keep &

Location of Weh Browser scapelCommunicatonPrograminetscape exe Browwse... |

Lacation of POF Yiewer I Filesdoheldcrobat 5. 0crobaticrobat. exe Browse...
¥ Use Proxy

Praxy Hast jirmemyjoe

Prawsy Port Tid

[~ Automatically open last praject

[Autornatically oversrite output files

[T Only display supported cores for selected target architecture
" Display obsoleta cores

[Close IP Customization Dialog after Generation

QK I Cancel | Defaults |

Figure 3-12: Preference Options Dialog Box

The following sections describe the preferences that you can set from the Preference
Options dialog box.

Preferences are stored as follows:

* Windows™ - Preferences are stored in the Windows registry.

« UNIX™ workstations — Preferences are stored in your home directory in the
.coregen.prf file.

Location of Web Browser

Specifies the location of your Netscape™ or Internet Explorer web browser.

Location of PDF Viewer

Specifies the location of your Acrobat™ or Netscape PDF viewer.

48

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

CORE Generator Data Sheets ST XILINX®

Use Proxy

If selected, allows you to specify a Proxy Host and Proxy Port. A network proxy is used to
provide an additional level of security between your computer and the Internet. It is
usually associated with a firewall. You may need to contact your system administrator for
your required Proxy Host and Proxy Port settings.

Proxy Host and Proxy Port settings must be specified if you want to perform data transfers
over the Internet from the CORE Generator IP Updates page.

Proxy Host and Proxy Port

If Use Proxy is selected, Proxy Host specifies the name of your proxy host and Proxy Port
specifies the proxy port. Contact your system administrator for this information.

Automatically open last project

If selected, the CORE Generator™ System bypasses the Open Project dialog box at startup,
and opens the last open project. If deselected, CORE Generator prompts you for a project at
startup by displaying the Open Project dialog box.

Automatically overwrite output files

Sets the OverwriteFilesDefault preference, which defines the default behavior for all
projects. This preference setting applies only if the similar, but project-specific
OverwriteFiles property is set to Default.

Only display supported cores for target architecture

If selected, the Cores Catalog Browser will show only those cores that are supported by the
target architecture setting for the current project.

Display obsolete cores

If selected, the Cores Catalog Browser display will include cores which are scheduled to be
obsoleted. If deselected, these cores will not be displayed in the list.

Close IP Customization Dialog after Generation

If selected, the core customization GUI displayed for a core will close after the core is
generated. If deselected, the core customization GUI will remain displayed after the core is
generated.

CORE Generator Data Sheets

The Xilinx™ CORE Generator System provides all core data sheets in Adobe Acrobat PDF
format.

Data sheets include the following items.

* Functional information
* Areaand performance data for some cores
» Pinouts and interface signal names

CORE Generator Guide www.xilinx.com 49
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: Using the CORE Generator

» Details on how to use the core in an application, making it easy for you to determine
whether a core meets your design requirements

Adohe Acrobat - [accum. pdf] (=] 4]
@ File Edit Document Tools View Window Help =1

NeEAS E K «» OO0 S #ABRBEOE

| Bookmarks\ils \‘qps S »
=-{] Accumulator ¥5.0 =
-] Features e
s Accumulator V5.0
] Functional Descriptia LQ?’C Q\{\f u
(] Pinout b :
"] CORE Generator Par: O s Froduct Spachcaten
] Power On Conditions - a Functional Description
|| See the FD-based Re i‘ XILINX hioviedimptibuptanisuts whiisyiont
PP " ‘operating on si or unsigned data. | datn &= pro-
:] Core Resource Utilize 2400 Lo Cem mmma:'_:apum:;.mpm Bdia canba sut
“{7] Parameter Values i1 San Josa, CASS124 0 a canstant. Cgtinal cany i, and

Prone: +1 408-386-T7T5 fhowr outpuis are available. Guiputs can be ragistered caly
Fax: 41 408-888.7114 ar bath registered and nonragistered. Options are also
URL: wewading. comilpcantar provided for Clock Enable, Asynchronous Set, Glear,
Suppart: supportsilim.cam and init, and Synchronous Set, Glear and Init. An
‘apticnal Bypass capability s alsa provided which can load
Features the valu PortB y inéo th jsbor. The out-
) put of the accumulator can also b saturated. The module
Drop-ins moduls for Virdax ™, Vistex™-E, \iax™.dI, an aptionally be generated @ a Reistional Placed Masr
irtex ™Il Pro, Spartan™:|l, and Spartan™-IE FRGAS [RPM) or as unpiaced kogic. When an RPM iz penertsd,

+ Gonerates Add, based the logio i o oo (RPN or n :

accurmulators -

+ Supports twa's complemant signed and umsigned
operations
Supparts inputs ranging fram 1 to 256 bis wide
+ Supports ouputs ranging from 1 4o 254 biks wide
User programmable foedback scaling
+ Gptional chosk anath, asmohrenous and synchrancus
canrols
Gptional nonregistarad cutpt 1
+ Gptional Bypass {Load) capabiity , cam
Uses relaionally placed macrs {RPM) mapping and o5 .

HBpDESD R ~m &P L5

performance
Incorporates Xilime Smart:IP™ technology for ubmost

Far use viith V4,11 and later of the Xilinx CORE
Generatar System

Figure 1: Gore Schematic Symbol

41 o I |

Figure 3-13: Data Sheet

You can view a core’s data sheet in the following ways:

» By clicking on the Data Sheet button in the core’s customization GUI

* By selecting the core in the Cores Catalog Browser and then selecting Core — Data
Sheet.

» By selecting the core in the Cores Catalog Browser and then clicking the Data Sheet
icon in the main CORE Generator toolbar.

» By rightclicking the core name in the Cores Catalog Browser and clicking Data Sheet

in the right-click menu.

This launches the Adobe Acrobat™ Reader and calls up the data sheet for the selected core.

50 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Accessing Cores

$7XILINX°

Accessing Cores

The words function and core are used interchangeably in this guide to mean a design
entity like a multiplier or FIR filter which the CORE Generator™ System can generate for
the designer.

Cores are organized by functional type into folders that expand or contract on demand.
Detailed information on each core is included in a specification or data sheet in PDF
format, which you can view using the Adobe Acrobat™ viewer (see “CORE Generator
Data Sheets”).

For each core, the CORE Generator System delivers the following:

A customized EDIF netlist and, for some cores, one or more NGC netlists.

* \erilog or VHDL behavioral simulation wrapper files which map to parameterized
simulation models in the XilinxCoreLib library

» Verilog or VHDL Instantiation templates
* ISE or Mentor schematic symbol support files.

Configuring the Cores Catalog Browser

The Cores Catalog Browser is a project-specific view of the IP customizers which are
available to the current project. It can be configured to add (make visible) or remove (make
invisible) any core customizers residing in the CORE Generator built-in repository
($XILINX/coregen/ip/xilinx).

Adding Core Customizers to the Cores Catalog

You are encouraged to always use the latest versions of all IP whenever possible so that
you can have access to the latest features and bug fixes for every core. Ordinarily only the
latest versions of all installed core customizers are displayed in the Cores Catalog Browser
when you select All after installing an IP update. However under some conditions, as
when it is necessary to minimize design changes, it may be necessary to modify an existing
core using an older version of a core customizer. The older version of the core customizer
can be accessed from Cores Catalog by performing a custom configuration of the catalog.

To make the older core customizer visible:

1. Select Project - Cores Catalog Display — Customize.

2. Double click the appropriate folders to find the core you wish to make visible in the
Update Project Cores window. You may change the way the cores are organized by
changing the setting in the View Catalog toolbar (notice that this window is very
similar to the Cores Catalog Browser in the main CORE Generator GUI).

3. Click the checkbox next to the core so that it is selected. This will make it visible in the
Cores Catalog for the project. For example, to make v5.0 of the Comparator core
customizer visible in the Cores Catalog, select the Version 5.0 entry.

Visibility Example

1. Locate the core by navigating to Math Functions — Comparators as shown in
Figure 3-14.

2. Click the checkbox next to the entry for Comparator 5.0.

CORE Generator Guide

www.xilinx.com 51
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

ﬁ[ﬁustumize Cores Catalog 5[

Wiy Catalog: |tw Functian vI

3. When you return to the main CORE Generator™ GUI, this core is now visible in the
catalog.

|

|

Kl

Basic Elements

| 1 Communication & Metwarking
|1 Digital Signal Processing

Math Functions
[Accumulators

[Adders & Subtracters

_JCORDIC
_Y Comparatars

[Complementers

|| Conversions
| Dividers
LI Multipliers

L Multiply Accumulatars

1 8guare Root
1 Trig Functions

Matme Type iar... | F| status
Caomparatar RpCEFE 20
Caomparatar JpCERE 30
Caomparatar RplCEFE A

v Comparator RpCEFE 50

v Comparator RpCEFEE RN

|+

_.
+ e 00|

O0ee

«44««{
4 4+ |2

&+ % %

| 1 Memaries & Storage Elements -
il Il [>]

Ok | Cancel |

Figure 3-14: Making the Comparator v5.0 Core Visible in the Cores Catalog Display

Removing Cores from View in the Cores Catalog

The procedure for removing individual cores from view in the Cores Catalog Browser for
your current project is similar to the procedure described above for making them visible.
The only difference is that you must uncheck the core customizer’s checkbox to remove it
from view.

To remove a core from view in the Cores Catalog Browser:

1. Select Project - Cores Catalog Display — Customize.

2. Find the core customizer you wish to remove from view in the Customize Cores
Catalog window that appears.

3. Click the checkbox next to the core so that it is no longer selected. When configured in
this manner, the core customizer will not display in the Cores Catalog for the project.

Copying a Project

When you copy a project, you copy all of the cores from the project (the source project) to
another project (the destination project). Cores from the source project are added to the
existing cores in the destination project.

When you copy cores from one project to another, only the XCP files are copied. The XCP
files describe the cores and how they are customized. Once the XCP files have been copied
to the destination project, they can be regenerated within the destination project using its
project options.

52

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Copying a Project ST XILINX®

To copy a project:
1. Select Project — Copy Project.
The Copy Project dialog box displays.

Copy Project

Source Project:
Directory Hicoregen_projectslcares? Browse...

Recent Projects:

Hlzoregen_projectsicaras?
Hicoregen_projectsicores?
Hicoregen_projectsicores3
Hlzoregen_projectsicarass

Destination Project:
Directory Hicoregen_projectsicores3 Browse...

Recent Projects:

Hicoregen_projectsicores?
Hlzoregen_projectsicaras]
Hicaregen_projectsicores3
Hicorenen_projectsicoress

ul_u_ I_I_I__l_

Ok Cancel

Figure 3-15: Copy Project Dialog Box
2. Inthe Source Project section of the Copy Project dialog box, specify the directory
containing the project you want to copy in one of these ways.
+ Enter the directory name in the Directory box.
OR

+ Browse to the directory using the Browse button.
OR

+ Click one of the directories in the Recent Projects box.

3. Inthe Destination Project section of the Copy Project dialog box, specify the directory
containing the project into which you want to copy the cores from the source project.
Select the directory in one of these ways:

+ Enter the directory name in the Directory box.
OR

+ Browse to the directory using the Browse button.
OR
+ Click one of the directories in the Recent Projects box.
4. Click OK.
The customized cores from the source project are copied into the destination project.

CORE Generator Guide www.xilinx.com 53
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

Input and Output Files

This section lists the input files used by the CORE Generator™ System, and the output files
generated by the CORE Generator System.

Table 3-5: Core Generator Input Files

File Extension or Name

Description

.CGF

As a log file, the CGF file is used in the Memory Editor to
record the user-specified inputs that are used to generate
the COE files for a memory (see .COE entry below). As a
specification file, a CGF file can be used to define the data
contents of COE files for memory blocks.

For more details on the CGF file refer to “Memory Editor
Overview” in Chapter 6.

.COE

ASCII input data file. Used when multiple data values
must be specified for a core, usually as an array. Examples
include specification of coefficient values for FIR Filters,
mask patterns for Correlator cores, and initialization
values for Memory modules and memory-based
modules. See the $XILINX/coregen/data directory and
“COE Files”.

XCO

CORE Generator input file containing the parameters
used to regenerate a core. To use an XCO file as an input,
select

File -~ Execute Command File and specify the desired
input XCO file.

The XCO is also an output file generated by the CORE
Generator.

For more details on the XCO file refer to “XCO Files” in
Chapter 4.

XCP

An XCP file is basically an XCO file, minus the project
specific settings such as FlowVendor, DesignFlow and
miscellaneous output file formats. The purpose of the
XCP file is to provide you with a data file which can be
copied to another project to regenerate a core, using
project settings that may be different from those in the
original core project.

54 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Input and Output Files ST XILINX®

Table 3-6: CORE Generator Output Files

File Extension or Name Description

ASY Graphical symbol information file. Used by the ISE tools
and some third party interface tools to create a symbol
representing the core.

.EDN EDIF Implementation Netlist for the core. Describes how
the core is to be implemented. Used as input to the
Xilinx™ Implementation Tools.

corename_padded.edn EDIF wrapper file generated for a core when the

Generate netlist wrapper with 10 pads project option is
enabled. The file adds input pads and output pads to the
core, allowing you to process the generated core through
the Xilinx design flow as if it were a complete chip design.

corename_flist.txt A text file listing all of the output files produced when a
customized core was generated in the CORE Generator.

get_models.log Log file containing all user visible messages displayed
during a get_models run. The log file is written to the
get_models destination directory.

MIF Memory Initialization File which is automatically
generated by the CORE Generator System for some
CORE Generator modules when an HDL simulation flow
is specified. A MIF data file is used to support HDL
functional simulation of modules which use arrays of
values. Examples include memories, FIR filters, and bit
correlators.

.NDF Optional output file produced for cores that generate
NGC files. The NDF files allow third party synthesis tools
to infer resource utilization and timing from the NGC files
associated with these new cores.

.NGC A binary Xilinx implementation netlist. Starting with
CORE Generator 4.2i IP Update #2, the logic
implementation of certain new CORE Generator IP is
described by a combination of a top level EDN file plus
one or more NGC files.

AV, Verilog wrapper file. File which is used to support
Verilog™ functional simulation of a core. The V wrapper
passes customized parameters to the Xilinx core. For
more information, see “Verilog HDL Design Flow” in
Chapter 5.

VEO Verilog template file. The components in this file can be
used to instantiate a core. For more details refer to
“Verilog HDL Design Flow” in Chapter 5.

verilog_analyze_order This file lists the CORE Generator Verilog behavioral
models in a suggested compiled order.

CORE Generator Guide www.xilinx.com 55
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: Using the CORE Generator

Table 3-6: CORE Generator Output Files

File Extension or Name Description

VHD VHDL wrapper file. File which is used to support VHDL
functional simulation of a core. The VHD wrapper passes
customized parameters to the generic core simulation
model. For more information, see “VHDL HDL Design
Flow” in Chapter 5.

VHO VHDL Template file. The components in this file can be
used to instantiate a core.

vhdl_analyze_order This file lists the CORE Generator™ VHDL behavioral
models in the order that they must be compiled for
simulation. More than one compile order may be valid for
the library.

XCO As an output file, the XCO file is a log file which records
the settings used to generate a particular core. An XCO
file is generated by the CORE Generator System for each
core that it creates in the current project directory. For
details on the XCO file refer to “XCO Files” in Chapter 4.

An XCO file can also be used as an input to the CORE
Generator. For information on how the XCO file can be
used as an input, refer to the XCO file description in
Table 3-5 above.

XCP As an output file, similar to the XCO file, except that it
does not specify project-specific settings such as target
architecture and output products.

XSF A port list information file used by the Mentor™ tools to
create a symbol representing the core.

XilinxCoreLib/*.v Verilog™ behavioral models extracted from the IP
installed in the CORE Generator tree. The verilog
/src/XilinxCoreLib directory is used as the source library
for compiled simulators. Usually located in
$XILINX/verilog/src by default.

XilinxCoreLib/*.vhd VHDL behavioral models extracted from the IP installed
in the CORE Generator tree. The vhdl
/src/XilinxCoreLib directory is used as the source library
for compiled simulators. Usually located in
$XILINX/vhdI/src by default.

XilinxCoreLib/*_comp.vhd | VHDL component declaration files for each CORE
Generator IP module extracted from the CORE Generator
tree. The files are located in the $XILINX/vhdI/src
directory by default.

56 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Using Core Customization GUIs ST XILINX®

Using Core Customization GUIs

The following sections describe details about using core customization GUIs to create
customized cores. The topics discussed are:

e “Core Customization GUI Overview”

« “Naming CORE Generator Modules”

e “Using Customization GUI Buttons”

* “lllegal or Invalid Values”

e “Using the Core Viewer”

e “Setting Options Using the Core Symbol”
» “COE Files”

Core Customization GUI Overview

There is a core customization GUI for each core included in the CORE Generator™ System.
The GUI supplies information about the core and allows you to customize core parameters
when you add a core to your project or recustomize the core afterwards.

Each core customization GUI contains four tabs:

« Parameters — Allows you to set the parameters through which you customize the
operation of the core.

e Core Overview — Contains a functional description of the core and indicates the core
version, source company, creation date, and type.

» Contact — Contains contact information for the company that developed the core.

 Web Links — Contains a listing of core-related pages on the Xilinx website, including
solution records related to this core, pages related to the CORE Generator, and pages
through which you can supply feedback to Xilinx.

Naming CORE Generator Modules

Most modules have a Component Name field which allows you to assign a name to the
core that you create. Files that the CORE Generator creates for a particular core have a root
filename that matches the Component Name.

Component names have the following restrictions:

* Must begin with a lower case alphabetic character: a - z
* No uppercase letters
* May include (after the first character): a-z, 0 - 9, _(underscore)
* No extensions
* No HDL reserved words. Examples of words that cannot be used are:
¢ \erilog keywords such as module, input, and output
+ VHDL keywords such as component, function, configuration, port, signal

CORE Generator Guide www.xilinx.com 57
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: Using the CORE Generator

Using Customization GUI Buttons
The following buttons are common to all customization GUIs:

» Generate — Assuming there are no conflicts with any of the specified parameters,
clicking Generate causes the CORE Generator to create the requested files for the
core.

» Dismiss - Closes the customization GUI and returns you to the Core Browser
window without generating any files.

« Data Sheet - Invokes Adobe Acrobat™ to display the data sheet for the module being
parameterized.

* Version Info — Lists New Features and Bug Fixes for this version of the module.

For information about a specific core’s parameters, such as upper and lower limits for
certain fields, see the core’s data sheet.

lllegal or Invalid Values

All customization GUIs flag illegal or invalid data in the same way. The affected field is
highlighted in red until the problem is corrected. If the reason a field is highlighted is not
obvious, or if the explanation in the log window is not clear, a more detailed explanation
can usually be obtained by pressing the Generate button.

Using the Core Viewer

The Core Viewer shows a graphical representation of a core’s footprint when it is
implemented as a Relationally Placed Macro (RPM). This representation can be useful
when you floorplan a large design. Only relationally placed logic is displayed because the
mapping and placement of unconstrained (non-RPM) logic is indeterminate. If none of the
logic for the core has been relationally placed, the Core Viewer simply indicates this with
the message, No RPMed Logic to Displ ay.

The Core Viewer also reports resource utilization and the percentage of the core’s logic that
has been relationally placed. The following figure illustrates what the Core Viewer might
display for a relationally placed multiplier core

58

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Using Core Customization GUIs

$7XILINX°

Core Yiewer

307 LUT sites used, 67 Reqgister sites used
The 98% of the design which is RPh'd is:

FERH A R
AEEEENEEE
R A A FHER
P F A FHFR
R A A FHER
FEEENEEEK

8 CLBEs wide, 8 CLEs tall

and uses 20 CLBs ar 176 slices

Figure 3-16: Core Viewer Screen for a Multiplier Core

Enabling the Display Core Footprint checkbox in a core customization GUI brings up the
Core Viewer after the core has been generated. An additional Create RPM checkbox is

provided in an IP core’s customization GUI when the core can be generated either with or
without RLOC constraints.

Setting Options Using the Core Symbol

In some of the new and newly-revised cores you can set configuration options in a core

configuration GUI by selecting pins on the core’s symbol drawing. Examples of these cores
are the Content Addressable Memory (CAM) and Distributed Arithmetic FIR Filter. On the
applicable symbols, the cursor will change to a hand when it passes over a selectable pin.
As an example, the CORDIC customization GUI allows you to select the RDY symbol pin
(see the following figure).

~Round Made
— N % OUT] Truncate
M 0T ¢ Round Pos Inf
w PHASE_ I PHASE_OLIT
& Round Pos Meg Inf
—_ RFD) . .
—CE o ~Optional Pin Selection
—CLK © RFD ¥ ACLR
ACLR SCLR
| | I ROY ¥ SCLR

Figure 3-17: Selecting a Symbol Pin in a Core Customization GUI

CORE Generator Guide

www.xilinx.com
1-800-255-7778

59

http://www.xilinx.com

ST XILINX® Chapter 3: Using the CORE Generator

When you select the pin, the symbol pin is activated and the RDY check box is selected to
indicate the pin is available to signal that output data is ready (see the following figure).

Figure 3-18: Result of Pin Selection

In some cases, selecting one pin will also select or deselect other pins in the symbol,
because the functions of these pins are related to the function of the selected pin.

COE Files

Some cores, for example, FIR filters, RAM, Correlators and Memories, require specification
of multiple data values such as coefficient, bit pattern, or initialization values. To specify
the values for these modules, you must load a COE file using a Load Coefficients button
in the core customization window. When you click the button, a browser dialog box
appears for you to load a COE file.

Figure 3-19: DA FIR Filter Customization GUI

60 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Using Core Customization GUIs ST XILINX®

~Coefficient Data Coefficient Reload

CnefﬁcientWidthha 1.32

Type (¢ Signed Unsigned

& Fixed " Reloadable

~COEFile
{COE File Mame |

I¥ Optimize Coefiicier Gelect coe file... 21x
LLogdlCaeficiEnta) o Ia coe_files ~| @« cF E-

ida_fil. Coe;

ddc.coe

ata Sheet... | Wa

File narme: I",cne Open I
Files of type: I.&II Files [*%) ﬂ Cancel |

Figure 3-20: Select COE File Dialog Box

Module specific information about the requirements for a core’s COE file can be found in
that core’s data sheet.

The following syntax displays the general form for a COE file:

Keyword =Val ue ; Optional Comment
Keyword =Val ue ; Optional Comment
<Radi x_Keywor d> =Val ue ; Optional Conment

<Dat a_Keywor d> =Dat a_Val uel, Data_Val ue2, Data_Val ue3;

COE files for block and distributed memories can be created easily using the CORE
Generator Memory Editor (see Chapter 6, “The Memory Editor”).

The following table describes COE file keywords for specifying radix values for data.
Keywords are not case sensitive. For information on the specific keywords required for a
core, please refer to that core’s data sheet.

Table 3-7: Description of COE File Radix Keywords

Keyword Description

RADIX Used for non-memory cores to indicate the
radix being used to specify the coefficients of
the filter.

MEMORY _INITIALIZATION_RADIX Used for Virtex memory initialization values
to specify the radix used.

CORE Generator Guide www.xilinx.com 61
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

The following table describes COE file keywords for data values. Keywords are not case

sensitive.

Table 3-8: Description of COE File Keywords for Data Values

Keyword

Description

COEFDATA

Used for filters to indicate that the data that

follows comprises the coefficients of the
filter.

MEMORY_INITIALIZATION_VECTOR

Used for Virtex™ block and distributed
memories.

PATTERN

Used for Bit Correlator COE files

BRANCH_LENGTH_VECTOR

Used in Interleaver COE files

MEMDATA

Obsolete keyword. Was used for XC4000
distributed memories.

Note: Any text after a semicolon is treated as a comment and is ignored.

One of the following keywords must be the last keyword specified in the COE file:

« COEFDATA

¢ MEMORY_INITIALIZATION_VECTOR
« MEMDATA (an obsolete keyword, supported for backward compatibility)

Any other keywords that follow are ignored.

You can find examples of COE files for the Distributed Arithmetic FIR Filter, Bit Correlator,
Digital Down Converter, RAM-based Shift Register, Distributed Memory, and Virtex block

RAM cores in the $XILINX/coregen/data directory.

Below is a selection of the COE files from this area.

62

www.xilinx.com
1-800-255-7778

CORE Generator Guide

http://www.xilinx.com

Using Core Customization GUIs ST XILINX®

EE R S S I O O S I kR R O

¥rkxxxkkkxxkkx Exanple of Virtex Bit Correlator. COE ***x**xxkxkxx
IR SRR SR SRS SRS SRS S SRS SR EE SR EREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS
; Sanple .CCE coefficient file for v2.0 and | ater

;. versions of the Bit Correl ator core.

; Inthis core, a COE file is used to specify the val ue
; of the bit mask when the Pattern Mask option is sel ected.

; Specifications:

; - 19 taps, hexadecimal coefficients
; - Serial input data

;. Please refer to the datasheet for this core for nore
; details on using the Mask option.

radi x = 16;
pattern =303101130222301130 3

Rk S Ik S kS S I R R S I O R

*xxkxxxxkx Exanpl e of Dual Port Block Menory .COE file *¥***x*kxxx
EE R IR SR S I R SR I I S I R R I S I R S I R S I R R R R R R S I R I I S I I R S S I I Rk S
; Sanple menory initialization file for Dual Port Block Menory,

; v3.0 or later.

; This .COE file specifies the contents for a bl ock nenory
; of depth=16, and width=4. |In this case, values are specified
; in hexadeci mal formt.

menory_initialization_radi x=2;
menory_initialization_vector=
1111,
1111,
1111,
1111,
1111,
0000,
0101,
0011,
0000,
1111,
1111,
1111,
1111,
1111,
1111,
1111,

Rk S Ik R O O I

*x*xxxxxx Exanple of Single Port Block Menory .COE file (***x**xxxx
EE R R R R S R R S R
; Sanmple nenory initialization file for Single Port Block Menory,
; v3.0 or later.

; This .COE file specifies initialization values for a bl ock
; menory of depth=16, and width=8. In this case, values are
; specified in hexadeci mal format.

CORE Generator Guide

www.xilinx.com 63
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 3: Using the CORE Generator

nmenory_initialization_radi x=16;
menory_initialization_vector=
ff,

ab,

fo,

11,

11,

00,

01,

aa,

bb,

cc,

dd,

ef,

ee,

ff,

00,

ff;

Rk S Ik S kS I R S o

krkkxxkkrxkx Exanple of Distributed Menmory . COE file (*x**xxkkixx
kkhkkhkkhkhkkkhkhkhkhkkhkhhhhkkhhhhkhkhkdhhkkhhhhkhkhdhrhkddhhhkkhkdhhhddhhkhkhdhrxhkddhxrdkdhrxkd,x*%x
; Sanple menory initialization file for Distributed Menory v2.0 and
; later.

; This .COE file is NOT conpatible with v1.0 of Distributed Menory Core.

; The exampl e specifies initialization values for a nenory of dept h= 32,
; and width=16. In this case, values are specified in hexadeci nal
; format.

menory_initialization_radix = 16;

menory_initialization_vector = 23f4 0721 11ff ABel 0001 1 OA O
23f4 0721 11ff ABel 0001 1 OA O

23f4 721 11ff ABel 0001 1 A O

23f4 721 11ff ABel 0001 1 A O

Rk S Ik o kS S O R O R R O O

*x*xxx Exanple of Distributed Arithmetic FIR Filter .CCE file ***
EE R R SR S I R SR I R S I R S I I S I I R S I R S I R R R S R I S I Rk I I S S I R S S I I R S
; Example of a Distributed Arithnmetic (DA) FIRFilter .COE file

; Wth hex coefficients, 8 symetrical taps, and 12-bit

; coefficients.

; Conpatible with all versions of the Distributed Arithmetic
; FIRFilter which supports Virtex/Virtex-11 and Spartan-11

Radi x = 16;
Coef Dat a= 346, EDA, 0D6, F91, F91, 0D6, EDA, 346;

64

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Generating Cores in Batch Mode ST XILINX®

Generating Cores in Batch Mode

Syntax

Running the CORE Generator™ System with no options selected causes the CORE
Generator to start in GUI mode. The CORE Generator System can be run in batch mode to
generate cores by specifying the XCO file that defines the core to be generated and its
parameters, and the project directory where the output files should be deposited.

The XCO file created by the CORE Generator System, when run in GUI mode, can be used
to drive the generation of the same core in batch mode. An XCO file can also be edited and
renamed to generate a slightly different core.

If the directory where the CORE Generator executables reside is not in the command
search path, then the CORE Generator System must be invoked using a fully specified
path.

For a complete description of the CORE Generator batch interface, see “Batch Mode” in
Chapter 4.

coregen [-i path_to_coregen_ini_file_nane]
[-p project_path] [-q polling_dir_path]
[-intstyle <ise|xflowsilent>1] [-h]

-b nmodul e_nane. xco

Performing CORE Generator Operations in Xilinx ISE

A number of CORE Generator operations can be performed within the Project Navigator
of the Xilinx™ Integrated Software Environment (ISE). Most of the operations are
performed without opening the CORE Generator window.

Within the Project Navigator, you can perform these CORE Generator procedures:

» Adding a customized core to a Project Navigator project

e Recustomizing a core

* Regenerating a core

* Regenerating all of the cores in a project

* Viewing the HDL functional model for a core

» Opening the CORE Generator window to manage the cores in a project

* Viewing the CORE Generator log

All of these operations are described in the ISE Guide, the ISE online help system. The core

related help topics are grouped under FPGA Design - Using Intellectual Property
(Cores) in the help Table of Contents.

Integrating CORE Generator into Applications

The CORE Generator provides a number of interfaces for integration into other
applications. Polling mode allows an application to communicate with the CORE
Generator through files. The polling interfaces provided by the CORE Generator, which
allow you to integrate it into other applications, are described in “Polling Mode” in
Chapter 4.

CORE Generator Guide

www.xilinx.com 65
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: Using the CORE Generator

ASY and XSF Symbol Information Files

The ASY and XSF files are produced by the CORE Generator as symbol information files
for various third party EDA tools.

The ASY file is an ASCII file containing graphical symbol information and pin attributes.
The Xilinx ECS schematic editor uses this file to generate symbols.

The XSF file is a Xilinx Netlist Format (XNF) portlist file used by the Mentor tools to create
a symbol representing the core.

66 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

2 XILINX®
Chapter 4

Batch Mode and Polling Mode

This chapter describes how CORE Generator™ operates in batch mode and in polling
mode. The chapter includes the following sections:

e “Batch Mode”

* “Batch Mode Command Line Options”

e “Command Files”

* “CORE Generator Commands”

e “Supported Commands in XCO and XCP Files”
e “CORE Generator Global Properties”

* “Project Properties”

* “Polling Mode”

Batch Mode

In batch mode, the CORE Generator runs the commands in a command file. The
commands must be valid CORE Generator commands. You can run CORE Generator in
batch mode in the following ways:

* When you invoke the CORE Generator from the command line. The command line
options to invoke the CORE Generator in batch mode are described in “Command
Line Options” in Chapter 2.

* By running a command file from the CORE Generator window. In the CORE
Generator window, select File — Execute Command File and specify the desired
input file. You may generate a core in batch mode by specifying an XCO file as the
input file.

Batch Mode Command Line Options

The options to the cor egen command that invoke the CORE Generator in batch mode are
described in “Command Line Options” in Chapter 2.

Command Files

A Xilinx CORE Generator command file is a file that contains valid CORE Generator
commands and comments. Command file comment lines begin with a '# symbol. The
CORE Generator allows you to execute most command files in GUI mode by selecting the
File » Execute Command File item in the main menu and entering the path to the
command file. You can also execute the command files in batch mode by invoking coregen

CORE Generator Guide www.xilinx.com 67
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 4: Batch Mode and Polling Mode

in command line mode with the - b command_file command line option. See “Command
Line Options” in Chapter 2 for more information.

The five types of command files in the CORE Generator™ are:
e coregen.ini/coregen_user_name.ini files

e user-generated command files

+ XCOfiles

* XCP files

» coregen.log files

coregen.ini/coregen_user_name.ini

The CORE Generator loads and executes INI files when it is first invoked and also when
changing projects. An INI file can contain any valid CORE Generator command. General
preferences are stored on a per user basis and project options are stored with the project. In
special situations, it is desirable to execute one or more commands on startup or when
opening a project. When you first invoke the CORE Generator, it looks for a file named
coregen.ini in the startup directory. Alternatively, you can direct the CORE Generator to
read a specific INI file with - i ini_file on the command line. When you open a CORE
Generator project, the CORE Generator looks for a coregen.ini in the project directory.

User-Generated Command Files

You can write your own command files to generate cores, create projects, customize the
CORE Generator environment, or execute any other CORE Generator command. User-
generated command files can have any name and extension. All global property SET
commands executed within a user-generated command file are only in effect for that
session. However, all project property SET commands executed within a user-generated
command file modify the current project. For information about the commands that may
appear in a command file, see “CORE Generator Commands”.

XCO Files

When generating a core, the CORE Generator creates a file called component_name.xco. This
is a log file that records all the options used to create the core. This file should not be edited
in most cases. The related XCP files serve a similar function and can be edited.

As a log file, XCO files can be used to verify the settings for all the options that were used
to generate a core. It can also be used to recreate the core exactly if you specify it as the
command file input to File - Execute Command File from the CORE Generator main menu
bar, or if you specify it as the argument to the -b option in batch mode (see “Command
Line Options” in Chapter 2 for more details). In addition, double-clicking a core in the
Generated Cores panel of the main CORE Generator GUI loads the customization
parameter settings specified in the corresponding XCO file into its Customization GUI,
allowing you to recustomize the core. This is useful when a core needs to be regenerated
with current project settings (HDL outputs, target architecture, etc.), but with some
parameter changes. See “Recustomizing a Core” in Chapter 3 for more details on this
feature.

68

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Command Files

$7XILINX°

XCO File Syntax

Comment lines begin with the # character. Any output format or options lines start with
the keyword SET. The lines that start with CSET are the options that are passed from the
core customization GUI. All data read in from a COE file is also preceded by the CSET

keyword

The following is an example XCO file for a version 7.0 Distributed Arithmetic FIR Filter
generated using the dafir.coe example listed in “COE Files” in Chapter 3.

Xi
Us

Nu
Nu
Nu
Nu
Nu
Nu
Nu

ET
ET
ET
SET
SET
SET
SELE
CSET

N EEE E E E E E E E E E E E E ST

GENE

linx CORE Generator 6.1i
ernanme = bob

COREGenPath = C:\xilinx\coregen

nmber of LUTs used in design: 50

nber of REG used in design: 72

nber of SRL16s used in design: 12

nber of Distributed RAM primtives used in design: 0
nber of Bl ock Menories used in design: 0O

nber of Dedicated Multipliers used in design: 0

nber of HU SETs used: O

BusFor mat = BusFor nat Angl eBr acket
XilinxFamly = Virtex

Qut put Opti on = Qut put Products

Fl owendor = Synopsys

Formal Verification = None

Qut put Products = InpNetlist BmFile

CT Distributed_Arithnetic_FIR Filter Virtex Xilinx,_Inc.

i mpul se_response = Symetric
nunber _of _channels = 1

cl ock_cycl es_per _out put _sanmple = 11
optimze_coefficients = true

coefficient _reload = Fi xed Coefficients
regi ster_output = fal se
coefficient_data_type = Signed
coefficient_width = 12

i nput _data_type = Si gnhed

i mpl ement ati on_option = Cl ock_Cycl es_Per _Qut put _Sanpl e
conponent _name = dafir

sanpl e_rate_change = 1

zer o_packi ng_factor =1

input _data_width = 10

nunber _of _taps = 8

filter_type = Single_Rate_FIR
coefficient file = C\coe files\da fir.coe
reset = fal se

RATE

ProjectPath = H:\coregen_projects\cores?

ExpandedPr oj ect Path = H:\ coregen_proj ects\cores?7

OverwiteFiles = Fal se

Core name: dafir

Number of Primitives in design: 173

Nurmber of CLBs used in design cannot be determnm ned when there is no
RPMed | ogi c

Nunber of Slices used in design cannot be deternined when there is no
RPMed | ogi c

Number of LUT sites used in design: 62

CORE Generator Guide

www.xilinx.com
1-800-255-7778

69

http://www.xilinx.com

ST XILINX® Chapter 4: Batch Mode and Polling Mode

XCP files

An XCP file is an XCO file minus all “SET” commands, which are project-specific. These
include the commands that specify Flow Vendor, DesignFlow and miscellaneous output
file formats. The purpose of the XCP file is to provide you with a way to port a previously
generated core to different projects and allow it to be regenerated using the new project’s
settings.

The XCP file corresponding to the XCO file listed in the previous section looks like the
following:

Xilinx CORE CGenerator 6.1i

SELECT Distributed Arithrmetic FIR Filter Virtex Xilinx, Inc. 7.0
CSET i npul se_response = Symmetric

CSET nunber _of _channels =1

CSET cl ock_cycl es_per _out put _sanple = 11

CSET optimze_coefficients = true

CSET coefficient _reload = Fi xed Coefficients
CSET register_output = fal se

CSET coefficient_data_type = Signed

CSET coefficient_wi dth = 12

CSET i nput _data_type = Signed

CSET i npl enentati on_option = C ock_Cycl es_Per_Qut put _Sanpl e
CSET component _nane = dafir

CSET sanpl e_rate_change = 1

CSET zero_packing_factor =1

CSET input_data_ width = 10

CSET nunber _of _taps = 8

CSET filter_type = Single_Rate_FIR

CSET coefficient file = C\coe files\da fir.coe
CSET reset = fal se

GENERATE

coregen.log

The coregen.log file is a log file that is automatically written by the CORE Generator. The
file contains all the actions performed and messages displayed during a CORE Generator
session. You can refer to the log to see what occurred during that session. A coregen.log file
cannot be replayed to recreate a session.

* Windows™ — The coregen.log file is written to the directory where the Start in field in
the Windows shortcut for the CORE Generator executable points. Normally this is the
directory %XILINX%\bin\nt. If the CORE Generator is run in batch or polling mode,
coregen.log is written to the directory where coregen.bat is invoked. If that directory
is not writeable, coregen.log is written to your home directory.

« UNIX™ Workstation — The coregen.log file is written to the directory from which the
coregen executable is invoked. If that directory is not writeable, coregen.log is written
to your home directory.

70 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

CORE Generator Commands

$7XILINX°

CORE Generator Commands

The following table describes the CORE Generator commands, command arguments, and

command functions that can be used in CORE Generator command files.

Table 4-1:

CORE Generator Commands

Command

Arguments

Function

COPYXCPFILES

<src_project_path>
<destination_project_path>

Copies all the XCP files from
one project to another.

CSET

<core_property=value>

Sets a core property value.

END

N/A

Terminates the CORE
Generator session.

EXECUTE

<command_file_path>

Executes the indicated
command file.

GENERATE

N/A

Elaborates the currently
selected core.

LAUNCHXCO

<xco_filename>

Opens a core customization
GUI for a specific core,
preloaded with the
parameter settings saved in
the specified XCO file.

Uses the project parameters
specified in the XCO file.

LAUNCHXCP

<xcp_filename>

Opens a core customization
GUI for the specific CORE,
preloaded with the
parameter settings specified
in the XCP file.

Uses project parameters
specified in the current
project.

LOCKPROPS

(Obsolete)

NEWPROJECT

<project_path>

Creates a new project in the
specified directory.

REGENERATEALLCORES

N/A

Regenerates all cores in the
current project using
current project settings. The
XCO files in the current
project are used as inputs
for regenerating the cores.

SELECT

<core_name> <architecture>
<vendor> <core_version>

Selects the indicated core.

CORE Generator Guide

www.xilinx.com
1-800-255-7778

71

http://www.xilinx.com

ST XILINX® Chapter 4: Batch Mode and Polling Mode

Table 4-1: CORE Generator Commands

Command Arguments

Function

SET <global_property=value>
<project_property=value>

Sets a CORE Generator™
property value.

SETPROJECT <project_path> Changes the current project
to the specified property
value.

UNLOCKALLPROPS (Obsolete)

UNLOCKPROPS (Obsolete)

Supported Commands in XCO and XCP Files

The following table describes the actions the CORE Generator will perform in batch mode

when it encounters commands in an XCO or XCP file.

Table 4-2: Commands in XCO and XCP Files

Note: There should be only
one GENERATE command
per XCO or XCP file. If more
than one exists only the first
one is executed and the rest
ignored. You can only
generate one core per XCO or
XCP file.

Command In XCO File In XCP File
LOCKPROPS, Issue warning and ignore | Issue warning and ignore
UNLOCKPROPS,

UNLOCKALLPROPS?2

CSET, SELECT Execute command Execute command

SET Execute command Ignore with no warning
SET LockProjectProps? Issue warning and ignore | Ignore with no warning
SET OverwriteFiles Ignore with no warning Ignore with no warning
GENERATE Execute command Execute command

All other commands, Ignore with no warning
including CORESELECT

Ignore with no warning

a. Startin%in the next CORE Generator release the LOCKPROPS, UNLOCKPROPS,

UNLO
supported.

KALLPROPS, and SET LockProjectProps commands will no longer be

72 www.xilinx.com
1-800-255-7778

CORE Generator Guide

http://www.xilinx.com

CORE Generator Global Properties ST XILINX®

CORE Generator Global Properties

The following table lists the CORE Generator™ global properties, values, and their
descriptions:

Table 4-3: Global Properties

Global Properties Values Description
CoreGenPath path Specifies the path to the
coregen install directory.
CoreSelect SpecifiedVersion | This property applies only
LatestVersion when reading an XCO file

in batch mode.

SpecifiedVersion: Uses
only the core version
specified.

LatestVersion: Uses the
latest version of the
specified core which is
available in the repository.

LockProjectProps? true | false Set this global property to
true to lock the project and
thus prevent other users
from simultaneously
accessing the project. To
unlock the project, reset
this property to false.

ProjectOverride true | false Specify true to use the
current project’s attributes
instead of those listed in
the XCO file. Specify false
to use the attributes in the
XCO files.

Username <username> This is your login name.

a. The LockProjectProps global property will no longer be supported, starting in the next
CORE Generator release.

CORE Generator Guide www.xilinx.com 73
1-800-255-7778

http://www.xilinx.com

ST XILINX® Chapter 4: Batch Mode and Polling Mode

Project Properties

The following table describes the Project Properties commands, values, and their
functions:

Table 4-4: Project Properties

Command Values Description
BusFormat BusFormatAngleBracket | Sets the indicated output bus
formatting.

BusFormatSquareBracket |
BusFormatParen |
BusFormatNoDelimiter |
BusFormatAngleBracketNotRipped |
BusFormatParenNotRipped |
BusFormatSquareBracketNotRipped

DesignFlow Schematic | VHDL | Verilog Schematic: Directs the CORE Generator
to create a symbol information file for
the selected vendor (XSF or ASY) for
each core it generates.

VHDL.: Directs the CORE Generator™
to create a corresponding VHO HDL
template and VHD wrapper file to be
used in conjunction with the static
parameterized behavioral HDL models
in $XILINX/VhdI/src/XilinxCoreLib.

Verilog™: Directs the CORE Generator
to create a corresponding VEO HDL
template and V wrapper file for use with
the static behavioral HDL models in
$XILINXZverilog/src/XilinxCoreLib.

ExpandedProjectPath project_path Specifies the expanded path to the
CORE Generator install directory.
FlowVendor Foundation_iSE | Innoveda | Signifies which vendor toolset you have
MentorSchematic | MentorHDL | selected to simulate and develop the
Synplicity | Synopsys | Cadence | core design.
Other
FormalVerification Formality | Verplex | None Selects one of the two supported formal
verification vendors. None is the
default.
74 www.Xxilinx.com CORE Generator Guide

1-800-255-7778

http://www.xilinx.com

Project Properties

$7XILINX°

Table 4-4: Project Properties

Command

Values

Description

OutputOption

DesignFlow | OutputProducts

Selects the project output options menu
configuration style.

DesignFlow (the default) assumes a
primary vendor has been selected to
support the overall CAE flow.

OutputProducts allows you to select
individual core elaboration outputs and
formats.

OverwriteFiles

True | False | Default

True allows the existing output files to
be overwritten. Default means the
overwrite behavior is determined by the
value of the OverwriteFileDefault
preference.

ProjectPath

<project_path>

Specifies the path to the current project.

SimElabOptions

AddPads
RemoveRPMs
CreateNdf
None

Core elaboration options that apply to
parameterizable cores only.

AddPads results in pads being added to
1/0 and clk pins in the core’s EDIF
netlist.

RemoveRPMs results in the placement
directives being removed from the
core’s EDIF netlist.

CreateNdf generates an NDF file when
an NGC core is elaborated.

None is default.

SimulationOutputProducts

VHDL | Verilog

Specifies the output products to be
created for elaboration to support HDL
simulation.

XilinxFamily

Spartan2| Spartan3 | Virtex | Virtex2
| Virtex2P

Target Xilinx™ architecture for the
CORE Generator project. Only one
target architecture is allowed per
project.

CORE Generator Guide

www.xilinx.com
1-800-255-7778

75

http://www.xilinx.com

$7 XILINX°

Chapter 4: Batch Mode and Polling Mode

Polling Mode

The CORE Generator™ can be invoked in polling mode, which on the surface looks the
same as the standard GUI mode. Polling mode allows an application to communicate with
the CORE Generator through files. This mode is useful to an application that needs to run
CORE Generator continuously in the background while frequently checking to see if
CORE Generator has generated a core, and occasionally issuing instructions to the CORE
Generator. CORE Generator can read and write files in polling mode and the application
uses the - g poll_dir_path option to specify where the files are located.

Output Polling Files

Output polling files are written by CORE Generator to communicate to an application
when CORE Generator has finished generating a core. Output polling files always have the
name coregen.fin and they contain two lines.

* The first line contains the following:
¢ User assigned core name
¢+ Name of the core
¢+ Coreversion

* The second line contains the keyword SUCCESS or ERROR depending on whether
the core was successfully generated. An example of the contents of a coregen.fin file
is:

regaddr Registered_Addr 1.0
SUCCESS

When an application finds the keywords SUCCESS or ERROR in the coregen.fin file, the
application can review the various log files to determine the appropriate processing for the
core. The application should delete the coregen.fin file immediately after it has been
processed so that the CORE Generator is free to write a new file. If a coregen.fin file
remains, the CORE Generator overwrites it on the next core generation.

Input Polling Files

The CORE Generator uses the input polling file to receive commands from the invoking
application. The input polling file always has the name coregen.cmd. This file can contain
any number of valid CORE Generator commands and is terminated by the keyword
COMPLETE. While in the polling mode, CORE Generator frequently monitors the status
of the coregen.cmd file. When it detects the keyword COMPLETE, CORE Generator
sequentially executes the commands in the file. After completing the last command in the
coregen.cmd file, CORE Generator deletes the file.

76

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

SXILINX®

Chapter 5

Schematic and HDL Design Flows

This chapter describes how to integrate a CORE Generator™ module into a user design
through various schematic and HDL design flows. This chapter contains a general
overview of the design flows, which include the following topics:

* “Understanding Schematic Design Flows”
e “Introduction to HDL Design Flows”

» “Creating Verilog Designs”

o “Verilog HDL Design Flow”

e “Creating VHDL Designs”

 “VHDL HDL Design Flow”

e “Using Instantiation Templates”

Understanding Schematic Design Flows

The CORE Generator System produces an EDIF Implementation Netlist (EDN) for
schematic design flows. It may also produce NGC files for some cores. For ISE and
Mentor™ flows, the CORE Generator also produces schematic symbol information files.
The EDN file and NGC files contain information for implementing the module. The
symbol files allow you to integrate the module into a schematic for ISE’s schematic editor
(ECS) and for Mentor tools.

ISE Design Flow

For details on how to integrate CORE Generator modules into an ISE design, refer to the
ISE Guide, the ISE online help system. The core related help topics are grouped under
FPGA Design - Using Intellectual Property (Cores) in the ISE Guide Table of Contents.

Mentor Design Flows

Mentor eProduct (Formerly Innoveda) Design Flow

Cores which are to be integrated into an eProduct™ schematic design flow should be
generated using the Xilinx/eProduct schematic interface tool (ePDCore). This tool is
invoked from within the eProduct schematic editor (Viewdraw ™),

For more details on the eProduct Xilinx flow, see Answer Record #11683 at the Xilinx
Answers Search.

CORE Generator Guide

www.xilinx.com 77
1-800-255-7778

http://www.xilinx.com
http://www.support.xilinx.com/support/searchtd.htm

S XILINX® Chapter 5: Schematic and HDL Design Flows

Mentor Design Architect Flow

The CORE Generator System is integrated into the Mentor™ Design Architect™ schematic
editor. Please refer to the Mentor Interface Guide documentation for details on integrating
your CORE Generator module into a Design Architect schematic design.

Cadence Design Flow

Setting the Vendor to Cadence in the CORE Generator Project Options dialog window will
direct the application to generate an EDIF Implementation netlist with the proper bus
delimiter format for Concept® HDL.

For further information about how to integrate a core into a Concept-HDL schematic,
please refer to the Xilinx answer here:

http://support.xilinx.com/techdocs/2005.htm

78 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://support.xilinx.com/techdocs/2005.htm
http://www.xilinx.com

Introduction to HDL Design Flows

$7XILINX°

Introduction to HDL Design Flows

Increasing design size and complexity, as well as recent improvements in design synthesis

and simulation tools, have made HDL the preferred design language of most integrated
circuit designers. The two leading HDL synthesis and simulation languages today are

Verilog™ and VHDL. To integrate a CORE Generator™ module into an HDL design, refer

to the design flow in the following figure.

| Extract XilinxCoreLib
I Behavioral Models
} with get_models

| (Optional)

Analyze XilinxCoreLib
Library Models

1

Generate Module

1

Instantiate Module

Create Testbench

Perform Behavioral
Simulation

Synthesize Design

1

Write Out
Implementation Netlist

Implement Design

X9550

Figure 5-1: HDL Front End Design Flow Chart

HDL Behavioral Simulation Flow Features

The CORE Generator HDL behavioral simulation flow features a parameterized
behavioral simulation model library (XilinxCoreLib), VHDL/Verilog wrapper files, and
instantiation template files.

A more comprehensive list of the features is as follows:

e XilinxCoreLib Simulation Library

The CORE Generator System provides both Verilog and VHDL Xi | i nxCor eLi b
behavioral simulation libraries to support functional simulation of the CORE
Generator cores.

CORE Generator Guide

www.xilinx.com
1-800-255-7778

79

http://www.xilinx.com

$7 XILINX°

Chapter 5: Schematic and HDL Design Flows

The Xi | i nxCor eLi b libraries are provided in source file format at standard locations
in the Xilinx™ installation tree.

The Verilog™ library is located here:
$XILINX/verilog/src/XilinxCoreL.ib,

and the VHDL library is located here:
$XILINX/vhdI/src/XilinxCoreLib.

The libraries are automatically updated when you install Core IP updates.

compxlib (Compile Xilinx HDL Libraries)

Automated support for compiling all Xilinx HDL libraries (including XilinxCoreLib
for CORE Generator IP) is integrated into the Xilinx application “compxlib”. Please

consult the Synthesis and Verification Design Guide for detailed information on how to
use this application.

get_models Utility

Utility for extracting HDL simulation models from an IP repository to a single library.
The get_models utility also generates analyze order information for the CORE
Generator Verilog and VHDL libraries which is needed when compiling these models
with compiled HDL simulators.

The get_models utility is available by selecting Tools — Get Models. This utility is an
advanced feature that does not need to be run in most cases since all IP models are
either automatically extracted during the install process, or shipped pre-extracted. See
“GetModels Overview” in Appendix A for details on get_models.

coredb Utility

The coredb command line utility updates or regenerates the primary.mnf installed IP
manifest file located in $XILINX/coregen/ip/xilinx/primary. The MNF file contains a
summary of all cores installed in the CORE Generator built-in repository. In normal
usage it is usually not necessary to run coredb since it executes automatically during
the CORE Generator startup process after you install an IP module update. The coredb
utility can be run manually if needed to explicitly force an update of the primary.mnf
file if the primary.mnf file becomes corrupted due to an install problem.

Syntax: cor edb

HDL Wrapper Files

The CORE Generator creates either a Verilog or VHDL wrapper file when HDL output
products are requested. The Verilog wrapper file name is module_name.v, and the
VHDL wrapper file name is module_name.vhd. The wrapper files are used to deliver
the customization constructs to the corresponding parameterized XilinxCoreLib
simulation models, providing a simpler user interface for behavioral simulation. The
wrapper files must be analyzed the same way actual behavioral simulation models
would be when performing functional simulation.

Instantiation Template Files

The VEO and VHO files are generated by the CORE Generator to be used as HDL
instantiation templates. Starting with the 4.1i release, the VEO and VHO files only
contain instantiation template code snippets. The parameter passing and
configuration code snippets which were written to these templates in earlier CORE
Generator releases are now written out to the wrapper files instead.

80

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Introduction to HDL Design Flows ST XILINX®

» verilog_analyze order File

This file lists the CORE Generator Verilog™ behavioral models in a suggested
compiled order. It may be updated by running Get Models from the CORE
Generator™ Tools menu.

Starting with the 4.1i release, XilinxCoreLib Verilog simulation models are compile
order independent. The verilog_analyze_order file continues to be provided to ensure
continuity of support for any designers that may be using this file as an input to a user
compile script.

e vhdl_analyze_order File

This file lists the CORE Generator VHDL behavioral models in the order in which they
must be compiled for simulation. It may be updated by running Get Models from the
CORE Generator Tools menu.

More than one compile order may be valid for compilation of the VHDL XilinxCoreLib
library.

CORE Generator Guide www.xilinx.com 81
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 5: Schematic and HDL Design Flows

Creating Verilog Designs

This section briefly describes the procedure for behavioral simulation, synthesis, and
implementation of Verilog™ designs containing CORE Generator™ modules. To integrate
a CORE Generator module into an HDL design, refer to the design flow in the following

figure.

Analyze XilinxCoreLib
Library Modules

|

Generate Module

|

Instantiate Module

|

Create Testbench
Interpreted Simulators

(Verilog-XL):

Y Wrapper File
Perform Behavioral)
Simulation -

Compiled Simulators
v (MTI, NC-Verilog,VCS):

Wrapper File
Wrapper File Synthesize Design

|

Write Out
Implementation Netlist

|

Implement Design
X10032

Figure 5-2: Verilog Front End Design Flow Chart

82 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Verilog HDL Design Flow i:X"JNX®

Verilog HDL Design Flow

This section describes the procedure for behavioral simulation, synthesis, and
implementation of Verilog™ designs containing CORE Generator™ modules using the
following vendor tools:

Table 5-1: Vendor Tools for Verilog Flow

Function Tools

Synthesis Synopsys™ FPGA Compiler [I™
Synplicity Synplify™

Mentor Graphics™ LeonardoSpectrum™
Xilinx™ XST

Simulation MTI ModelSim™/VLOG
Cadence™ Verilog-XL
Cadence NC-Verilog
Synopsys VCS/VCSi

Verilog Design Flow Procedure

This section describes the detailed procedure for the Verilog design flow.

Verilog source format simulation models for the CORE Generator cores are provided in

$

XILINXZverilog/src/XilinxCoreLib. Compile the XilinxCoreLib library using one of the

following procedures.

1.

Use the Xilinx compxlib library compilation script to compile the XilinxCoreLib library
source models. The script is located at $XILINX/bin/<platform>/. For details on how
to use this script, refer to the information on the compxlib compile script in “HDL
Behavioral Simulation Flow Features”.

OR

Compile XilinxCoreLib using the individual commands listed in the following table.

CORE Generator Guide

www.xilinx.com 83
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 5: Schematic and HDL Design Flows

Table 5-2: Simulation Instructions

Vendor Setup File Settings

Commands

MTI None

vlib <dir_to_compiled_XilinxCoreLib>

vmap XilinxCoreLib
<dir_to_compiled_XilinxCoreLib>

vlog +incdir+$XILINX/verilog/src
-work XilinxCoreLib $XILINX/verilog/src/glbl.v
{files in verilog_analyze_order}

ncverilog Add the following in cds.lib:

DEFINE XilinxCoreLib
{compiled_XilinxCoreLib}

Add the following in hdl.var:
DEFINE LIB_MAP ($LIB_MAP,

>XilinxCoreLib)

=> V)

$XILINX/verilog/src/XilinxCoreLib=

DEFINE VIEW_MAP ($VIEW_MAP, .v

ncvlog -MESSAGES -CDSLIB cds.lib

-HDLVAR hdl.var

-INCDIR $XILINX/verilog/src

-WORK XilinxCoreLib
$XILINX/verilog/src/glbl.v

{files in verilog_analyze_order}

ncpack -MESSAGES -CDSLIB cds.lib XilinxCoreLib

vcs/vesi None

vcs -q -Mupdate
-Mdir=<compiled_XilinxCoreLib>
-Mlib=<compiled_XilinxCoreLib>
-y <src_XilinxCoreLib> +libext+.v
+incdir+$XILINX/verilog/src
$XILINX/verilog/src/glbl.v
{files in verilog_analyze_order}

Verilog-XL N/A

N/A

2. Inthe CORE Generator™, select Project — Project Options. Click Flow Vendor in the
Output Options panel. The Design Entry panel appears in the right hand side of the
dialog. From the Design Entry panel, select Verilog in the first column and your target
Vendor in the second column. This specifies the vendor software you will be using for
your Verilog design, and accordingly, the preferred EDIF bus delimiter format for
compatibility with the synthesis tool output. This ensures proper integration with the
upper level parent implementation netlist.

84 www.xilinx.com

CORE Generator Guide

1-800-255-7778

http://www.xilinx.com

Verilog HDL Design Flow

$7XILINX°

Project Options

Output Options
Select options by:
% Flow Vendor

" Qutput Products

Target Architecture

IVinex2 Select |

Overwrite Files

IFaIse Set |

Design Entry
" Schematic

" WHOL
& Vetilog

€ Cadence

€ Mentor Graphics (HDL)
 ISE

€ Innoveda

& Synopsys

€ Synplicity

 Other

Metlist Bus Format |B=n:m= 'I

Cancel |

Figure 5-3: Sample Project Options Setting for Synopsys Verilog Flow

In the preceding figure, the Design Entry is set to Verilog. If the Vendor is set to
Synopsys, the bus delimiter format is automatically set to B<n:m>. Table 5-3
shows the bus delimiter format associated with each synthesis vendor.

Table 5-3: Bus Delimiter Format

Vendor EDIF Bus Delimiter Format

Mentor Graphics B(n:m)
(LeonardoSpectrum)

Synopsys FPGA Compiler Il B<n:m>
Synplicity (Synplify) B(n:m)

ISE (Xilinx XST) B<n:m>

Innoveda (eProduct) BI

Cadence B<n:m>

3. Instantiate the module in the parent design.

Insert the instantiation template from the VEO file into the parent design, and edit the
module connections. The following example illustrates the use of the Verilog template
file with a parent design. Copy the module instantiation template and paste it into the

parent design according to the instructions in the following section.

CORE Generator Guide www.xilinx.com
1-800-255-7778

85

http://www.xilinx.com

S XILINX® Chapter 5: Schematic and HDL Design Flows

Verilog myadder8.veo Instantiation Template File

Rk S o kR Ik S S IR R S S S R A I R S

* This file is owned and controlled by Xilinx and must be used *
* solely for design, sinulation, inplenentation and creation of *
* design files limted to Xilinx devices or technol ogies. Use *
* with non-Xilinx devices or technol ogies is expressly prohibited *
* and imedi ately term nates your |icense. *
* *
* Xilinx products are not intended for use in life support *
* appliances, devices, or systens. Use in such applications are *
* expressly prohibited. *
* *
* Copyright (C) 2001, Xilinx, Inc. Al R ghts Reserved. *
***/
/1 The follow ng nmust be inserted into your Verilog file for this
/! core to be instantiated. Change the instance name and port
/1 connections(in parentheses) to your own signal nanes.
[]-emee e - Begin Cut here for | NSTANTI ATION Tenplate ---// | NST_TAG
nyadder 8 Your | nst anceNane (
-A(A),

- B(B),

.CINC.IN,

-AQ,

. CLK(CLK)) ;
/1 INST_TAGEND ------ End | NSTANTI ATION Tenpl ate ---------

/1 You nust conpile the wapper file nyadder8.v when sinulating

/1l the core, nyadder8. Wen conpiling the wapper file, be sure to
/1 reference the XilinxCoreLib Verilog sinulation library.

/1 For detailed instructions, please refer to the

/1 "Coregen Users Cuide".

The customized core myadder8 is defined in the wrapper file, myadder8.v, which is
generated by Core Generator.

The following example displays the Verilog parent design file: myadder8_top.v:

Verilog Parent Design File: myadder8_top.v

nodul e nyadder8_top (A P, B P, CINP, QP, CLK P);
input [7 : 0] AP
input [7 : 0] B_P;

i nput C_I NP;
output [8 : 0] QP;
i nput CLK_P;
/'l 1 NST_TAG
nyadder 8 uut (
.A(A P),
.B(B_P),
.C IN(C_INP),
. AQP),
. CLK(CLK_P));
/1 I NST_TAG END
endnodul e
86 www.xilinx.com CORE Generator Guide

1-800-255-7778

http://www.xilinx.com

Verilog HDL Design Flow

$7XILINX°

Create a test bench.

Create a test bench file called to simulate the parent design containing the myadder8
core. Include an instantiation of the parent design and stimuli to activate the adder.
The following example displays the framework for a test bench used to simulate this
design, with some sample simulation stimuli.

adder_tb.v File

‘timescale 1 ns/1 ps
nodul e adder _tb;
reg CLKT;
reg C_I NT;
reg [7:0] AT,
reg [7:0] BT;
wire [8:0] QrT;
/* Instantiation of top |evel design */
nyadder 8_top uut (
. A _P(AT),
. B_P(BT),
.C_INP(C_INT),
- Q_P(QM),
. CLK_P(CLKT)
)

/* Add stinulus here */

al ways #10 CLKT = ~CLKT;
initial begin

$tinmeformat (-9, 3,"ns", 12);
end

initial begin
C INT = 0;

AT = 0;
BT = 0;
CLKT =
#100
AT = 8 b10000000;
BT = 8 b00000001;
#40;

AT = 8 b11100001;
#40

BT = 8 b00000010;
#1000 $stop;

/1 #1000 $finish;

1;

end
/* end stimulus section */
endnodul e

Analyze the behavioral simulation.

Analyze the simulation netlist, being sure to include the V wrapper file for the core.
The following table describes compile and simulation commands for all Xilinx™
supported simulation vendors.

CORE Generator Guide

www.xilinx.com 87
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 5: Schematic and HDL Design Flows

Table 5-4: Simulation Instructions

Vendor Setup File Settings Commands

MTI None vlib work

vmap XilinxCoreLib <compiled_XilinxCoreLib>
vlog adder_tb.v myadder8_top.v myadder8.v
vsim -Lf XilinxCoreLib adder_tb

NC-Verilog In cds.lib, add DEFINE XilinxCoreLib ncvlog adder_tb.v myadder8_top.v myadder8.v

[compiled_XilinxCoreL.ib] ncelab -message adder_tb

ncsim -run adder_tb

VCS/VCSi None vcs -Mupdate -Mlib=<compiled_XilinxCoreLib>
-y $XILINX/verilog/src/ XilinxCoreLib
+libext+.v +incdir+ $XILINX/verilog/src -R
adder_tb.v myadder8 top.v myadder8.v

Verilog-XL None verilog +incdir+$XILINX/verilog/src
-y <src_XilinxCoreLib>

+libext+.v

adder_tb.v myadder8_top.v
myadder8.v

6. Synthesize the design.

Most synthesis tools automatically infer a black box upon encountering a Verilog™
module declaration, which only contains port directional declarations. The logic for
each core is specified in its EDIF implementation netlist (component_name.EDN) and,
for some cores, may also be specified in additional NGC files, but it is not specified in
any Verilog file.

Note: For Synplicity™ only, direct the synthesizer to treat each core as a black box if
necessary.

Synthesize the parent design following the vendor specific instructions in the
following table.

Table 5-5: Synthesis Tool Instructions

Vendor Tool Instructions
Mentor Graphics Do not read in a separate V or EDIF file for the CORE
LeonardoSpectrum Generator module. Mentor Graphics automatically
treats the module as a black box.
Synopsys FPGA Compiler |1 No special instructions.
88 www.Xxilinx.com CORE Generator Guide

1-800-255-7778

http://www.xilinx.com

Verilog HDL Design Flow

$7XILINX°

Table 5-5: Synthesis Tool Instructions

Vendor Tool Instructions

Synplicity™ Synplify™ Analyze the V wrapper file in Synplify.

The CORE Generator™ attaches the appropriate
black_box attribute to the core’s module declaration
in the V wrapper file for the module. Analyzing the
V wrapper file is sufficient to prevent black box
warnings from Synplify during compilation.

ISE (Xilinx XST) No special instructions.

The following example shows how the CORE Generator configures the module
declaration for the core as a Verilog black box for Synplicity.

Synplicity Verilog Black Box

nodul e nyadder8 (
A,
B,
C IN,
Q
CLK) ; /1 synthesis bl ack_box

input [7 : 0] A
input [7 : 0] B;
input C_ IN
output [8 : 0] Q
i nput CLK;

/1 (list of custom zation paraneters onitted)

inst (
-ACA),
. B(B),
.CINC.IN,
- QQ,
- ALK(QLK)) ;

/1 (other optional 3rd party black box attributes
/1 omtted)

endnodul e

Write out the Implementation Netlist.

After the parent design has been synthesized, write out its implementation netlist
using the synthesis tool. The implementation netlist file is written out in EDIF (.EDF)
format.

You have the option of either breaking buses out into their individual bus bits(B<I>,
B(1), B[l], or BIl), or maintaining them as a single array (B<n:m>, B(n:m) or B[n:m])
when writing out the EDIF implementation netlist for a module.

Before generating cores for an HDL design, you should confirm that you have set the
bus format (individual bus bits or a single array) to match the format you use for the
ports when you instantiate the core.

CORE Generator Guide

www.xilinx.com 89
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 5: Schematic and HDL Design Flows

For lists of the various vendor tools and descriptions for writing out netlists, see the
following table:

Table 5-6: Implementation Netlist Formats

Vendor Description

Mentor Graphics™ LeonardoSpectrum™ Writes out EDIF netlist by default.

Synopsys™ FPGA Compiler [I™ FPGA Compiler Il writes out an EDIF file
for all Xilinx designs.

Synplicity™ Synplify™ Synplify writes out EDIF for all Xilinx
designs.

8. Implement the Netlist Cores.

The implementation netlists for each of the cores in the parent design are merged in with
the main design when the NGDBuild program (the Translate stage of Project Navigator) is
run on the top level parent design during design implementation. To merge the netlists
successfully, verify that all of the CORE Generator EDN EDIF (and NGC, if applicable)
netlist(s) for the generated module or modules are located in the same directory as the top
level EDIF netlist for the synthesized design. Alternatively, you can place all the EDIF and
NGC files associated with the design in a separate directory and then run NGDBuild with
the —sd option to specify explicitly the location of the directory containing the CORE
Generator implementation netlist files.

90

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Creating VHDL Designs i:X"JNX®

Creating VHDL Designs

This section describes the procedure for behavioral simulation, synthesis, and
implementation of VHDL designs containing CORE Generator™ modules. To integrate a
CORE Generator module into a VHDL design, refer to the design flow in the following
figure.

Analyze VHDL XilinxCoreLib
Library Models

Generate Module

Instantiate Module

Create Testbench

Perform Behavioral VHD
Simulation Wrapper File

Synthesize Design

Write Out
Implementation Netlist

Implement Design

X9552

Figure 5-4: VHDL Front End Design Flow Chart

CORE Generator Guide www.xilinx.com 91
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 5: Schematic and HDL Design Flows

VHDL HDL Design Flow

This section describes the procedure for behavioral simulation, synthesis, and
implementation of VHDL designs containing CORE Generator™ modules using the
following vendor tools:

Table 5-7: Vendor Tools for VHDL Flow

Function Tool

Synthesis Synopsys™ FPGA Compiler [I™

Synplicity™ Synplify™
Mentor Graphics™ LeonardoSpectrum™
Xilinx™ XST

Simulation MTI™ ModelSim/VCOM

VHDL Design Flow Procedure

This section describes the detailed procedure for the VHDL design flow.

1.

Compiling VHDL Behavioral Simulation Library

All VHDL simulators require that VHDL models be analyzed before simulation can
actually proceed. The VHDL source models for Xilinx CORE Generator modules are
located in $XILINX/vhdl/src/XilinxCoreLib.

Support for the XilinxCoreL.ib library is available in the compxlib compilation script
located in $XILINX/bin/<platform>. Use compxlib to compile the XilinxCoreLib
VHDL library. For more information on compxlib, refer to “HDL Behavioral
Simulation Flow Features”.

You can alternatively compile XilinxCoreLib by directly invoking the individual MTI
commands as follows.

a.

Create the XilinxCoreLib library with MTI ModelSim/VHDL selected, by entering
the following commands:

cd library_directory
vlib xilinxcorelib
Note: The name of the analyzed library, xilinxcorelib, must be lowercase.

Establish a link to the compiled behavioral models. To use a library of compiled
behavioral models in your simulation, a link must be established between the
compiled source in your project directory and the compiled library directory. To
map the XilinxCoreLib library to your project directory, type the following:

vmap Xilinxcorelib library_directory/xilinxcorelib
This maps the logical name of xilinxcorelib to the XilinxCoreLib library directory
created by the vlib command.

The vmap command creates and also modifies the MTI modelsim.ini file. This file
is read by the ModelSim/VHDL simulator, which uses the library mapping
information in it to map library names to physical locations on a disk or network.

Analyzing the Behavioral Models

92

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

VHDL HDL Design Flow

$7XILINX°

2.

Analyze the VHDL models into the previously mapped Xilinxcorelib library in the
order specified in the vhdl_analyze_order file. The following excerpt is an
example from the vhdl_analyze_order file:

VHDL Sinmulation file list. Files are listed in
the order they should be analyzed in. If file

Fl.vhd is dependent on file F2.vhd, then file F2
wll be |listed before F1.

Note that all file nanmes have been witten in | ower case.

ul _utils.vhd
viftv2 utils.vhd
vfft1024v2. vhd
vfft1024v2_conp. vhd
vfft1l6v2. vhd
vift16v2_conp. vhd
vfft256v2. vhd

mul VHT. vhd
nmul t VHT_conp. vhd

To analyze the behavioral models in the xilinxcorelib library with MTI
ModelSim/VHDL, type the following:

vcom -work xilinxcorelib

<path_to_Xilinx_install _dir>/vhdl/src/Xilinx-

Cor eLi b/ ul _utils.vhd

vcom -work xilinxcorelib

<path_to_Xilinx_install _dir>/vhdl/src/Xilinx-

Cor el i b/ mul VHT. vhd

vcom -work xilinxcorelib
<path_to_Xilinx_install _dir>/vhdl/src/Xilinx-
Cor eLi b/ mul VHT _conp. vhd

vcom -work xilinxcorelib
<path_to_Xilinx_install _dir>/vhdl/src/Xilinx-
Corel i b/ acc2sVHT. vhd

etc.

Note: Itis critical that you compile the models in the proper order, specifically, primitive
models before macro level models. Compiling the models in the wrong order leads to errors
in compilation.

Generating the Module

To set up a new CORE Generator project, follow the procedure in “Creating a New
Project” in Chapter 3. CORE Generator cores can only be created in a CORE Generator
project.

CORE Generator Guide

www.xilinx.com 93
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 5: Schematic and HDL Design Flows

Project Options X|

Select Project — Project Options. Click Flow Vendor under Output Options. The
Design Entry panel appears in the right hand side of the dialog.

From the Design Entry panel, select VHDL in the first column for the Design Flow,
and your target Vendor in the second column. This specifies the vendor software
you will use for your VHDL design, and the preferred EDIF bus delimiter format
for compatibility with the synthesis tool output. Setting these options correctly
ensures proper integration with the upper level parent implementation netlist.

The vendor setting changes the bus delimiter displayed in the Netlist Bus Format
box to the correct setting for that vendor. See Table 5-3 for information on the
specific bus delimiter format for each synthesis vendor.

As shown in the following figure, if the Vendor is set to ISE, the bus delimiter
format is automatically set to B<n:m>.

Qutput Optians Design Entry
Select options by:
& Flow Yendor

 Output Products

" Schematic ¢ Mentor Graphics (HDL)
& YHDOL & |SE

 Vatilog Innoveda

" Bwnopsys

¢ Bynplicity

 Other

Target Architecture

IVinex‘z Select |

Cwerwiite Files

IFalse Set | Metlist Bus Format |B=n:m= 'l

Cancel |

Figure 5-5: VHDL Behavioral Simulation Option

Instantiating the Module

When you select VHDL as your design flow, a VHDL template file
component_name.VHO, an implementation netlist component_name.EDN, and (for some
cores) NGC netlists, are generated. This occurs whenever a core is generated when the
VHDL option is selected in the Project Options dialog box. The VHO template file
includes the following items:

¢
¢

Component declaration

Component instantiation

For more information on the VHO file, see “Using a VHO Instantiation Template
File”.

The following procedure for instantiating a module is the same for all simulators:

Connect the core to the parent design by editing the instantiation block.

94

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

VHDL HDL Design Flow

$7XILINX°

Modify the port connections in the instantiation template to reflect the actual
connections to the parent design. For more details, see “VHDL Parent Design File
myadder8_top.vhd”.

The component declaration and component instantiation block establish a link in
the VHDL code to the EDIF implementation netlist for the CORE Generator™
module. This link is necessary to ensure that the core is integrated properly when
the parent VHDL design has been synthesized. The VHDL instantiation of the core
in the parent design serves as a placeholder for the core. After the parent design
has been synthesized, the Xilinx tools merge the core’s EDIF netlist (and, for some
cores, any underlying NGC files) with the rest of the parent design.

Note: The component instantiation contains dummy signal names that must be replaced with
the actual signal names in the parent design. The corresponding pins on the core are connected
to the actual sighal names.

This next example illustrates the use of the VHO template file in a parent design. In
this example, an 8-bit registered adder, myadder8, is generated by the CORE
Generator System and is instantiated in a parent design. The files of interest are the
instantiation template file, myadder8.vho, the myadder.vhd wrapper file, and the
parent design, myadder8_top.vhd.

VHDL Template File myadder8.vho

This file is owned and controlled by Xilinx and nust be used --
solely for design, sinulation, inplementation and creation of --
design files Iimted to Xilinx devices or technol ogies. Use --
with non-Xilinx devices or technologies is expressly prohibited --
and i medi ately term nates your |icense. --

Xil'inx products are not intended for use in |life support --
appl i ances, devices, or systens. Use in such applications are --
expressly prohibited. --

Copyright (C) 2001, Xilinx, Inc. Al R ghts Reserved. --

The followi ng code nust appear in the VHDL architecture header:

------------- Begin Cut here for COVPONENT Decl aration ------ COW_TAG
conponent nyadder 8

port (

A: IN std_l ogi c_VECTOR(7 downto 0);
B: IN std_|logic_VECTOR(7 downto 0);
CIN IN std_|ogic;

Q QUT std_l ogi c_VECTOR(8 downto 0);
CLK: IN std_l ogic);

end conponent;

XST bl ack box decl aration

attribute box_type : string;
attribute box_type of mnmyadder8: conponent is "black_box";

FPGA Conpil er Bl ack Box decl aration

attribute fpga_dont_touch: string;
attribute fpga_dont_touch of myadder8: conponent is "true";

Synplicity black box declaration

CORE Generator Guide

www.xilinx.com 95
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 5: Schematic and HDL Design Flows

attribute black_box : bool ean;
attribute black_box of myadder8: conponent is true;

COWP_TAG END ------ End COVPONENT Declaration ------------

-- The following code nust appear in the VHDL architecture

body. Substitute your own instance nane and net nanes.

------------- Begin Cut here for | NSTANTI ATION Tenplate ----- | NST_TAG

your _i nstance_name : nyadder8

port map (
A => A
B => B,
CIN => C_IN,
Q=>Q
CLK => CLK);
I NST_TAG END ------ End | NSTANTI ATION Tenplate ------------

You rnust conpile the wapper file nyadder8.vhd when sinul ating
the core, nyadder8. Wen conpiling the wapper file, be sure to
reference the XilinxCoreLib VHDL simulation library. For detail ed
instructions, please refer to the "Coregen Users Cuide".

The wrapper file myadder8.vhd is generated by the CORE Generator™ along with
an EDIF netlistand VHO file when VHDL outputs are requested. The wrapper file
contains a Configuration Specification which binds the customized core to the
corresponding XilinxCoreLib VHDL behavioral simulation model, and also passes
the VHDL model generics which customize the model. The wrapper file must be
analyzed during behavioral simulation.

Note: In this example of the Adder core, no NGC netlist files are produced by the core. Some other
cores produce NGC files in addition to the EDIF netlist.

Since the 4.1i release, with the introduction of the Configuration Specification
construct, you no longer need to use configuration declarations in your upper
level VHDL blocks.

The next section consists of the parent design, myadder8_top.vhd. The component
declaration and the instantiation (with dummy signal names replaced with actual
signal names) were cut and pasted from myadder8.vho.

VHDL Parent Design File myadder8_top.vhd

l'ibrary | EEE;

use | EEE. std_| ogi c_unsi gned. al | ;
use | EEE. std_l ogic_1164. al | ;
ENTI TY nyadder8_top IS

PORT (

AP: I N std_|l ogic_vector(7 downto 0);
BP: IN std_logic_vector(7 downto 0);
CINP: IN std_logic ;

QP: QUT std_l ogi c_VECTOR (8 downto 0);
CLKP: IN std_logic);

END nyadder 8_t op;

ARCHI TECTURE use_core of myadder8_top IS

96

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

VHDL HDL Design Flow

$7XILINX°

---- The MYADDER8 core is used in this design. The core
---- nust be declared via a 'conponent declaration’;
---- nyadder 8. vho provides the component declaration
---- which is cut and pasted into the design as
---- shown bel ow.
conponent nyadder 8

port (

A IN std_|l ogi c_VECTOR(7 downto 0);

B: IN std_|l ogic_VECTOR(7 downto 0);

CIN INstd_logic;

Q QUT std_l ogi c_VECTOR(8 downto 0);

CLK: IN std_logic

)

end conponent;

-- Synplicity black box declaration
attribute black_box : bool ean;
attribute black_box of myadder8: conponent is true;

---- The core is instantiated into this design.

---- nyadder 8. vho provides an instantiation

---- tenplate which nust be nodified

---- so that it reflects actual signals used in the

---- design, establishing the connectivity between the
---- core and other logic at this level. The instance
---- of the core nust also be given an actual |abel to
---- replace the dumy "your_i nstance_nanme" tag. In this
---- exanple,it is replaced by "nyadder8_1".

nyadder 8_1 : myadder 8
port map (

A => AP,

B => BP,

C IN => C_INP,

Q=> P,

CLK => CLKP

)

end use_core;
Creating the Test Bench

Create a test bench file to simulate a parent design containing the myadder8 core. The
test bench must instantiate the parent design. The test bench should also contain
stimulus to activate the adder. The following example displays a part of the test bench
file used to simulate this design. In this example, the section containing simulation
stimulus is omitted.

CORE Generator Guide

www.xilinx.com 97
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 5: Schematic and HDL Design Flows

VHDL Test Bench File myadder_tb.vhd

l'ibrary | EEE;

use | EEE. std_l ogi c_1164. ALL;
ENTI TY nyadder_tb is

END nyadder _t b;

ARCHI TECTURE si nul ate OF nyadder_tb IS

---- The parent design, nyadder8_top,
---- in this testbench. Note the conpo
---- declaration and the instantiation

is instantiated
nent

COVPONENT nyadder 8_t op
PORT (
AP : IN std_| ogic_vector(7 downto

0);

BP : IN std_|logic_vector(7 downto 0);

CLKP: IN std_logic ;

C INP: IN std_Ilogic;

QP: OUT std_l ogi c_VECTOR (8 downto
END COVPONENT;

SIGNAL a_data_input : std_|l ogic_vector
SIGNAL b_data_input : std_logic_vecto
SI GNAL cl ock . std_l ogic;
SIGNAL carry_in : std_| ogic;

0));

(7 DOWNTO 0);
r(7 DOMANTO 0);

SIGNAL sum: std_l ogic_vector (8 DOANTO 0);

BEG N
uut: mnyadder 8_t op
PORT MAP (
AP => a_data_i nput,
BP => b_data_i nput,
CLKP => cl ock,
C INP=> carry_in,

@R = Q;
stinul us: PROCESS
BEG N

----Provide stinmulus in this section.

wai t;
end process; -- stimulus
END si nul at e;

5. Performing Behavioral Simulation

(not shown here)

Before the Model Technology™ simulation tools can be used to simulate the design,
the wrapper file for the module, the parent design, and the test bench need to be
analyzed. These design files are analyzed with the vcomcommand into a local, default,

work library, created using the vl i b comman

d.

a. Analyze the wrapper file, the parent design and test bench file. Start up MTI
ModelSim™ in the project_directory and type the following:

vlib work

vcom nyadder 8. vhd
vcom nyadder 8_t op. vhd
vcom nyadder _t b. vhd

98

www.xilinx.com
1-800-255-7778

CORE Generator Guide

http://www.xilinx.com

VHDL HDL Design Flow

$7XILINX°

b. Invoke the simulator.
The simulator may now be invoked by typing in the following command:
vsi m nyadder _tb
Synthesizing the Design

Synthesize the parent design containing the core or cores. Follow the vendor specific
instructions in Table 5-8 for integrating a black box module into your design. If
needed, please refer to your synthesis vendor documentation for more details.

In most cases you must NOT add the VHD wrapper for the core to your synthesis project or
analyze it as part of your synthesis flow. Additionally, although the CORE Generator™
VHO template files continue to specify black box attributes for the supported synthesis
vendors, attachment of black box attributes is now optional for most vendors.

Note: Implementation logic for a CORE Generator core is specified in its EDIF implementation
netlist <component_name>.EDN and, for some cores, may also be specified in additional NGC
files, but it is not specified in the VHD wrapper file for the core.

The following table gives special instructions for the different synthesis tools:

Table 5-8: Synthesis Tool Descriptions

Vendor Tool Special Instructions
Mentor Graphics™ Do not read in a separate VHD or EDIF file for the
LeonardoSpectrum™ CORE Generator module. Mentor Graphics

automatically treats the module as a black box.

Synopsys™ FPGA Compiler II™ | No special instructions.

Synplicity™ Synplify™ Do not read in a separate VHD or EDIF file for the

CORE Generator module.

It is also recommended that you attach a
syn_black _box attribute to the component
declaration for the CORE Generator module as
indicated in the VHO template generated for the
core. This attribute is optional but prevents
Synplicity from issuing warnings about black box
modules.

ISE (Xilinx XST) No special instructions.

VHDL Black Box

conponent nyadder 8
port (
A: IN std_l ogi c_VECTOR(7 downto 0);
B: IN std_l ogi c_VECTOR(7 downto 0);
CIN INstd_logic;
Q QUT std_l ogi c_VECTOR(8 downto 0);
CLK: IN std_l ogic
)

end conponent;

-- Synplicity black box declaration
attribute black_box : bool ean;
attribute black_box of myadder8: conponent is true;

CORE Generator Guide

www.xilinx.com 99
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 5: Schematic and HDL Design Flows

7. Writing out the Implementation Netlist

After the parent design has been synthesized, write out its implementation netlist
using the synthesis tool.

You have the option of either breaking buses out into their individual bus bits(B<I>,
B(1), B[l], or BIl), or maintaining them as a single array (B<n:m>, B(n:m) or B[n:m])
when writing out the EDIF implementation netlist for a module.

Before generating cores for an HDL design, you should confirm that you have set the
bus format (individual bus bits or a single array) to match the format you use for the
ports when you instantiate the core.

For lists of the various vendor tools and descriptions for writing out netlists, see the
following table:

Table 5-9: Implementation Netlist Formats

Vendor Description
Mentor Graphics™ Writes out EDIF netlist by default. No special
LeonardoSpectrum™ instructions.

Synopsys™ FPGA Compiler 1™ | FPGA Compiler Il writes out an EDIF file for all
Xilinx™ designs. No special instructions.

Synplicity Synplify Synplify writes out EDIF for all Xilinx designs.

8. Implementing the VHDL Design

The implementation netlists for each of the cores in the parent design are merged in with
the main design when the NGDBuild program runs on the top level parent design during
design implementation. To merge the netlists successfully, verify that all of the CORE
Generator EDN EDIF (and NGC, if applicable) netlist(s) for the generated module or
modules are located in the same directory as the top level EDIF netlist for the synthesized
design. Alternatively, you can place all the EDIF and NGC files associated with the design
in a separate directory and run NGDBuild with the —sd option to specify explicitly the
location of the directory containing the CORE Generator implementation netlist files.

Using Instantiation Templates

Instantiation template files are files containing code that can be used to instantiate a CORE
Generator module into your Verilog™ or VHDL design. Verilog instantiation template files
have an extension of .VEO, and VHDL instantiation template files have an extension of
VHO.

Using a VEO Instantiation Template File

Starting with the 4.1i release, the VEO file has been simplified so that it only contains an
instantiation template. The module declaration and model customization parameters that
previously were included in the VEO file are now delivered in a separate V wrapper file.

The following is an example of the VEO file for a customized 8 bit adder module called
adder8:

100

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Using Instantiation Templates ST XILINX®

Verilog Instantiation Template for an 8-Bit Adder

/1 The follow ng nmust be inserted into your Verilog file for this
/1 core to be instantiated. Change the instance nanme and
/1 port connections (in parentheses) to your own signal nanes.

[]--memmmmmo- Begi n Cut here for | NSTANTI ATI ON Tenpl ate ---// | NST_TAG
adder 8 Your | nst anceNane

-ACA)

.B(B),

0O,

. CE(CE),

.aqa)y,

.CLR(CLR),

.S(9));
/1 INST_TAG END ------ End | NSTANTI ATION Tenplate ---------

/1l You nust conpile the wapper file test.v when simulating

/1l the core, test. Wen conpiling the wapper file, be sure to
/1 reference the XilinxCoreLib Verilog sinulation library.

/1 For detailed instructions, please refer to the

/1 "Coregen Users Cuide".

Verilog Wrapper file for adder8: adder8.v

/1 The synopsys directives "synopsys translate_of f/transl ate_on"
/1 specified below are supported by XST, FPGA Conpil er, Exenpl ar
/1 and Synplicity synthesis tools. Ensure they are correct

/1 for your synthesis tool (s).

/1 You nust conpile the wapper file adder8.v when sinul ating

/1 the core, adder8. Wen conpiling the wapper file, be sure to
/1l reference the XilinxCoreLib Verilog sinulation library.

/1 For detailed instructions, please refer to the

/1 "Coregen Users CGuide".

nodul e adder 8 (
A,
B,
C IN,
Q
CLK) ; /1 synthesis bl ack_box

input [7 : 0] A
input [7 : 0] B;
input C_ IN
output [7 : 0] Q
i nput CLK;

/1 synopsys translate_off

C_ADDSUB_V4_0 #(
0,// c_ainit_val
"0000",// c_a_type
1,// c_a width
8,// c_bypass_enabl e
0,// c_bypass_| ow
0,// c_b_constant

CORE Generator Guide www.xilinx.com 101
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 5: Schematic and HDL Design Flows

0,// c_b_type
1,// c_b_val ue
"0",// c_b_width
8,// c_enable rlocs
1,// c_has_aclr
0,// c_has_add
0,// c_has_ainit
0,// c_has_aset
0,// c_has_a_signed
0,// c_has_bypass
0,// c_has b in
0,// c_has_b_out
0,// c_has_b_signed
0,// c_has_ce
0,// c_has c_in
1,// c_has_c_out
0,// c_has_ovfl
0,// c_has_q
1,// c_has_q_b_out
0,// c_has_qg_c_out
0,// c_has_qg_ovfl
0,// c_has_s
0,// c_has_sclr
0,// c_has_sinit
0,// c_has_sset
0,// c_high_bit
7,11 c_latency
1,// c_lowbit
0,// c_out _wdth
8,// c_pipe_stages
1,// c_sinit_va
"0",// c_sync_enable
0,// c_sync_priority
1)// c_sync_priority
inst (
-A(A),
.B(B),
.CINC.IN,
-QQ,
. CLK(CLK));

/1 synopsys transl ate_on

/1 FPGA Compil er black box declaration

/1 synopsys attribute fpga_dont_touch "true"

/1l synthesis attribute fpga_dont_touch of adder8 is "true"
/'l XST bl ack box declaration

/'l box_type "bl ack_box"

/1 synthesis attribute box_type of adder8 is "bl ack_box"

endnodul e

102 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Using Instantiation Templates ST XILINX®

Using a VHO Instantiation Template File

A VHO file contains code that you can use to instantiate a CORE Generator™ module in
your VHDL design. The VHDL configuration declaration, which used to be in the VHO file
in previous releases, has been replaced by a configuration specification. The VHDL
configuration specification is declared in the wrapper file, module_name.vhd, for the core.
This arrangement hides the code complexity associated with the customization of the
parameterized simulation model for the core. You can process the wrapper file the same
way you would process a simulation model, without worrying about the internal contents
of the file. Like an actual simulation model, the VHD wrapper file must be analyzed
during simulation.

With this enhancement, it is no longer necessary to add a configuration declaration in your
upper level designs.

The following is an example of the VHDL instantiation template and wrapper file for a
customized 8 bit adder, adder8.

VHDL Instantiation Template for adder8. (adder8.vho)

-- The following code nust appear in the VHDL architecture header:
------------- Begin Cut here for COWPONENT Decl aration ------ COW_TAG

conponent adder 8
port (
A: IN std_l ogi c_VECTOR(7 downto 0);
B: IN std_|logic_VECTOR(7 downto 0);
CIN IN std_logic;
Q OUT std_l ogi c_VECTOR(7 downto 0);
CLK: IN std_l ogic);

end conponent;

-- COW_TAG END ------ End COVPONENT Declaration ------------

-- The following code nust appear in the VHDL architecture
-- body. Substitute your own instance nanme and net nanes.

------------- Begin Cut here for | NSTANTI ATION Tenplate ----- | NST_TAG
your _i nstance_nane : adder8
port map (

A => A

B => B,

CIN = C.IN,

Q=>Q

CLK => CLK);
-- INST_TAG END ------ End | NSTANTI ATION Tenplate ------------

-- You must conpile the wapper file adder8.vhd when sinul ating

-- the core, adder8. Wen conpiling the wapper file, be sure to

-- reference the XilinxCoreLib VHDL simulation library. For detail ed
-- instructions, please refer to the "Coregen Users Cuide".

CORE Generator Guide www.xilinx.com 103
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 5: Schematic and HDL Design Flows

VHDL Wrapper File for adder8: adder8.vhd

-- You must conpile the wapper file adder8.vhd when sinul ating

-- the core, adder8. Wen conpiling the wapper file, be sure to

-- reference the XilinxCoreLib VHDL simulation library. For detail ed
-- instructions, please refer to the "Coregen Users Cuide".

-- The synopsys directives "synopsys translate_off/transl ate_on"
-- specified bel ow are supported by XST, Exenplar and Synplicity

-- synthesis tools. Ensure they are correct for your

-- synthesis tool (s).

-- synopsys transl ate_off
LI BRARY i eee€;
USE i eee.std_| ogic_1164. ALL;

Li brary XilinxCorelib;

ENTI TY adder8 1S
port (
A: IN std_l ogi c_VECTOR(7 downto 0);
B: IN std_|logic_VECTOR(7 downto 0);
CIN IN std_logic;
Q OQUT std_l ogi c_VECTOR(7 downto 0);
CLK: IN std_l ogic);

END adder 8;

ARCHI TECTURE adder8_a OF adder8 IS

conponent wrapped_adder 8
port (
A: IN std_l ogi c_VECTOR(7 downto 0);
B: IN std_| ogi c_VECTOR(7 downto O);
CIN IN std_logic;
Q QUT std_l ogi c_VECTOR(7 downto 0);
CLK: IN std_logic);

end conponent;

-- Configuration specification
for all : wapped_adder8 use entity
Xi I'i nxCoreLi b. C_ADDSUB_V4_0(behavi oral)
generic map(
c_has_ainit => 0,
c_has_s => 0,
c_sync_enabl e => 0,
c_has_q => 1,
c_has_sinit => 0,
c_has_sset => 0,
c_has_add => 0,
c_has_ovfl => 0,
c_has_qg_b_out => 0,
c_has_sclr => 0,
c_out_wi dth => 8,
c_sinit_val =>"0",
c_bypass_| ow => 0,
c_has_b_signed => 0,
c_b constant => 0,
c_has_bypass => 0,

104

www.xilinx.com
1-800-255-7778

CORE Generator Guide

http://www.xilinx.com

Using Instantiation Templates ST XILINX®

c_low bit => 0,
c_a_type => 1,
c_has_aset => 0,
c_has_qg_c_out => 0,
c_b_type => 1,
c_add_node => 0,
c_has_qg_ovfl => 0,
c_has_aclr => 0,
c_has_b in => 0,
c_has_c_in => 1,
c_has_b out => 0,
c_latency => 1,

C_pi pe_stages => 1,
c_sync_priority => 1,
c_b width => 8,

c_b value => "0",
c_bypass_enabl e => 0,
c_has_a_signed => 0,
c_has_c_out => 0,
c_enable_rlocs => 1,
c_a width => 8,
c_has_ce => 0,
c_high_bit => 7,
c_ainit_val => "0000");

BEG N

U0 : wapped_adder8
port map (
A => A
B => B,
CIN => CIN,
Q=>Q
CLK => CLK);
-- synopsys transl ate_on

END adder 8_a;

CORE Generator Guide www.xilinx.com 105
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 5: Schematic and HDL Design Flows

106 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

2 XILINX®
Chapter 6

The Memory Editor

This chapter describes the Memory Editor. The chapter includes the following sections:

e “Memory Editor Overview”

e “Creating a Memory with a Single Memory Block”
e “Adding Additional Memory Blocks to a Memory”
» “Specifying COE File Keywords”

* “Importing a CSV File”

e “Generating a CSV File”

e “CGF File Format”

« “Sample CGF and COE Files”

Memory Editor Overview

The Memory Editor is a tool that helps to create COE files to specify memory contents and
initialization values for CORE Generator™ memory cores. Although other COE files may
be used for other purposes (specifying FIR filter coefficients, for example), the Memory
Editor generates COE files formatted for CORE Generator memory cores only.

A single memory is typically made up of one or more memory blocks. For each memory;,
the Memory Editor creates a single CGF file which defines the contents of one or more COE
files. For each memory block defined in a CGF file you define in the Memory Editor, the
Memory Editor generates a separate COE file.

The Memory Editor COE Generation Format (CGF) file is a dual purpose log and
specification file. As a log file, it records the user-specified inputs that are used to generate
the COE files for the memory. As a specification file, it can be used to define the contents of
COE files for memory blocks. A pre-existing CGF file can be edited, saved, and then loaded
into the Memory Editor and used to create a new COE file or files.

The Memory Editor is accessed by selecting Tools — Memory Editor in the CORE Generator
GUL.

CORE Generator Guide www.xilinx.com 107
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 6: The Memory Editor

The Memory Editor GUI

When the Memory Editor is invoked from the CORE Generator™ GUI, a Memory Editor
Control Panel and a Memory Contents window open (shown following).

EB Memory Editor - [definition1_cgf] i [m] B
File Help
Memory Black Options
Add Block
Memary Black Mame: ot I
Eemame Block |
=l
Delete Block |
Block Depth: 2586
Data Width: |1E
Default Ward: o
Default Pad Bit Walue: IEI "’I Fad Direction: |left 7
Address Radix 10 = Data Radix 16 7
Configure COE File Parameter Hames
Radix: IMEMORY_INITIALIZATION_RADI}(LI
Diata: [MEMORY_INITIALIZATION_VECTOR =]
Consaole
Figure 6-1: Memory Editor Control Panel
108 www.xilinx.com CORE Generator Guide

1-800-255-7778

http://www.xilinx.com

Memory Editor Overview

$7XILINX°

H Memory Contents

Jump To Address: ID Go |

Configure Yalues for Address Range... |

Address | +0 [1 +2 +3 +4 +5 +6 +7 Ascl |
noo 0 0 0 i i i i 0 [«|
003 0 i i i i i i [
016 0 0 0 0 0 0 0 [
024 0 0 0 0 0 0 0 0 |
032 0 i i i i i i 0 e
040 0 i i i i i i [
048 0 0 0 0 0 0 0 0 [
056 0 0 0 0 0 0 0 0o [
064 0 i i i i i i [
072 0 i i i i i i [B
Figure 6-2: Memory Contents Window
The fields in the Memory Editor Control Panel (Figure 6-1) are described in the following
tables. The “CGF Parameter” column shows the corresponding CGF file value.
Table 6-1: Individual Memory Block Properties
GUI Field
(Memory Editor Default Value CGF Parameter Description
Control Panel)

Memory Block Name | none #memory_block_name | Name of the memory
block. A memory block
name cannot start with
a digit and can only
contain the characters
‘a-z','0-9', and "_".

Block Depth 256 #block _depth Memory depth. The
number of words in the
memory block. The
maximum depth
allowable is 1048576.

Data Width 16 #data_width The number of bits
making up a memory
word.

Default Word 0 #default_word Default value of a
memory word if no
explicit value is
specified.

CORE Generator Guide

www.xilinx.com
1-800-255-7778

109

http://www.xilinx.com

$7 XILINX°

Chapter 6: The Memory Editor

Table 6-1: Individual Memory Block Properties

GUI Field
(Memory Editor
Control Panel)

Default Value

CGF Parameter

Description

Default Pad Bit Value | 0

#default_pad_bit_value

Used as a default value
to pad the memory
values when the width
of the data value you
provide is less than the
Data Width of the
memory.

Options: 0, 1

Pad Direction left

#pad_direction

The direction in which
a Data Word is padded
(using the default bit
value) when the width
of the data word you
provide is less than the
Data Width of the
memory.

Options: left, right

Data Radix 16

#data_radix
and
#signed

Radix used to specify
the value of data words
(for example, binary or
hexadecimal).

When Data Radix is set
to a value of 10 (signed)
or 10 (unsigned) in
Memory Editor
Control Panel, #signed
CGF parameter is set to
true or false.

Options: 2, 8,
10 (signed),
10 (unsigned), 16

Address Radix 10

#address_radix

The radix used for

specifying memory
address values (for
example, binary or
hexadecimal).

Options: 2, 8, 10, 16

110

www.xilinx.com
1-800-255-7778

CORE Generator Guide

http://www.xilinx.com

Memory Editor Overview

$7XILINX°

Table 6-1: Individual Memory Block Properties

GUI Field
(Memory Editor
Control Panel)

Default Value

CGF Parameter

Description

Radix (under
Configure COE File
Parameter Names)

MEMORY_INITIALIZATION_RADIX

#coe_radix

Keyword that will be
written out to COE file
for memory word
radix. The data radix
specifies memory
initialization values. To
determine the memory
word radix keyword
required for a CORE
Generator core, refer to
the data sheet for that
core.

Data (under
Configure COE File
Parameter Names)

MEMORY_INITIALIZATION_VECTOR

#coe_data

Keyword that will be
written out to COE file
for memory data
values. The data vector
represents the actual
array or vector of
memory values. To
determine the memory
data value keyword
required for a CORE
Generator core, refer to
the data sheet for that
core.

Table 6-2: Memory Block Operations
GUI Field Description
Add Block To add a new memory block.

Rename Block

To rename a memory block.

Delete Block

To delete a memory block. This has an associated confirm dialog to
prevent accidentally losing a large block of data in one keystroke.

CORE Generator Guide

www.xilinx.com

1-800-255-7778

111

http://www.xilinx.com

$7 XILINX°

Chapter 6: The Memory Editor

The fields in the Memory Contents Window (Figure 6-2) are described in the following
table.

Table 6-3:

Memory Contents Window Fields

GUI Field
(Contents Window)

Description

Jump to Address Allows you to display a memory location in the Address table.
When you enter an address in this box and click Go, the address
table adjusts to display the value at the address.

Go Adjusts address table to display the address in the Jump to

Address field.

ConfigureValues for
Address Range

Allows you to set a memory value for a range of addresses. When
you click this button, a dialog box appears for you to specify the
start address, the end address, and the value you want to set for
the range of addresses.

Address table

Shows the values assigned to the different memory addresses.

ASCII

Shows the ASCII equivalents for the memory values in each cell
within an address table row. A period indicates that the data in
the memory cell does not specify a valid ASCII character.

If the memory data has a Data Width of 8, you can enter ASCI|I
characters in the ASCII column and the equivalent values will
automatically be written in the Address table.

Creating a Memory with a Single Memory Block

To create a memory with a single memory block:

1.

2
3.
4.
5

In the Core Generator™ window, select Tools — Memory Editor.

In the Memory Editor Control Panel, select File — New Memory Definition.
In the Memory Editor Control Panel, click the Add Block button.

In the Add Block dialog box, enter a memory block name and click OK.
Configure the fields of the Memory Editor Control Panel.

These fields are described in Table 6-4.

Table 6-4: Memory Editor Control Panel Fields

Field

Description
Block Depth The number of data words in the memory block. The maximum
depth allowable is 1048576.
Data Width The number of bits making up a memory word.

Address Radix

The radix used for specifying memory address values (for
example, binary, hexadecimal).

Default Word

Default value of a memory word if no explicit value is specified.

112

www.xilinx.com CORE Generator Guide

1-800-255-7778

http://www.xilinx.com

Creating a Memory with a Single Memory Block ST XILINX®

Table 6-4: Memory Editor Control Panel Fields

Field Description

Default Pad Bit Value | Used as a default value to pad the memory values when the

width of the data value you provide is less than the Data Width
of the memory.

Pad Direction The direction in which a Data Word is padded (using the

Default Pad Bit Value) when the width of the data word you
provide is less than the Data Width of the memory.

Address Radix The radix used for specifying memory address values (for

example, binary or hexadecimal).

Data Radix The radix used to specify the value of data words (for example,

binary or hexadecimal). If you are specifying a Data Radix of 10
(decimal), you can select 10 (signed) or 10 (unsigned). If the
values are signed, the MSB is the sign bit.

Radix (under Keyword that will be written out to COE file for memory word

Configure COE File | radix. The data radix specifies memory initialization values. To

Parameter Names) determine the memory word radix keyword required for a
CORE Generator core refer to the data sheet for that core.

Data (under Keyword that will be written out to COE file for memory data

Configure COE File | values. The data vector represents the actual array or vector of

Parameter Names) memory values. To determine the memory data value keyword

required for a CORE Generator core refer to the data sheet for
that core.

10.

In the Memory Contents window, set the values for the memory locations in this way:

+ To set the value for a single location, click the cell for the location and enter the
value.

+ To set the value for a location not currently displayed, enter the address in the
Jump to Address box and click Go. The location is displayed in the address table
below. You can then set the value for that location.

+ To set the values for a range of addresses, click the Configure Values for Address
Range button, enter the Start Address, End Address, and Value in the dialog box
that opens, and click OK.

Values must be set to conform to the options (Data Width, Pad Bit Value, and others)
set in the Memory Editor Control Panel.
In the Memory Editor Control Panel, select File — Generate.

In the Generate dialog box, select COE File(s) (for CORE Generator) and enter a
directory in which the COE file will be saved.

If you want to save the data in a CSV (Comma delimited) file, select CSV File(s).
Click OK.

The Memory editor writes a CGF file with the specified name and a COE file with the
name cgffilename_blockname.coe, where cgffilename is the name of the CGF file and
blockname is the Memory Block Name specified in the Memory Editor Control Panel.

“Sample CGF and COE Files — Single Memory Block” shows the format of a CGF file and
a COE file for a memory with a single memory block.

CORE Generator Guide

www.xilinx.com 113
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Chapter 6: The Memory Editor

Adding Additional Memory Blocks to a Memory

You can build a memory one block at a time using the Add Block command in the Memory
Options panel.

To add memory blocks to an existing memory:

o g b~ w b

10.

11.
12.

In the Core Generator window, select Tools - Memory Editor.

In the Memory Editor Control Panel, select File — Open Memory Definition.

In the Open dialog box, open the CGF file to which you will add a memory block.
In the Memory Editor Control Panel, click the Add Block button.

In the Add Block dialog box, enter a memory block name and click OK.
Configure the fields in the Memory Editor Control Panel.

These fields are described in Table 6-5.

In the Memory Contents window, set the values for the memory locations in this way:

+ To set the value for a single location, click the cell for the location and enter the
value.

+ To set the value for a location not currently displayed, enter the address in the
Jump to Address box and click Go. The location is displayed in the address table
below. You can then set the value for that location.

+ To set the values for a range of addresses, click the Configure Values for
Address Range button, enter the Start Address, End Address, and Value in the
dialog box that opens, and click OK.

Values must be set to conform to the options (Data Width, Pad Bit Value, and others)
set in the Memory Editor Control Panel.

Continue to add blocks to the memory by performing steps 4 through 7 for each
additional block.

When you have configured all of the additional blocks, select File — Generate in the
Memory Editor Control Panel.

In the Generate dialog box, select COE File(s) (for CORE Generator) and enter a
directory in which the COE files will be saved.

If you want to save the data in CSV (Comma delimited) files, select CSV File(s).
Click OK.

The Memory Editor saves the information about the new blocks in the CGF file and
writes a COE file for each additional block. Each COE file has a name in the form
cgffilename_blockname.coe, where cgffilename is the name of the CGF file and blockname is
the Memory Block Name specified in the Memory Editor Control Panel.

“Sample CGF and COE Files — Multiple Memory Blocks” shows the format of a CGF file
and the COE files for a memory with multiple memory blocks.

114

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Specifying COE File Keywords ST XILINX®

Specifying COE File Keywords

The Memory Editor defaults to the following two keywords for memory word radix and
memory data values, respectively, when writing out COE files:

« MEMORY_INITIALIZATION_RADIX
The data radix used to specify memory initialization values.

e MEMORY_INITIALIZATION_VECTOR
The data vector representing the actual array or vector of memory values.

Other COE file keywords may be required for older versions of the Xilinx™ CORE
Generator™ memory cores. To determine the specific keywords required for a CORE
Generator core refer to the data sheet for that core. You can also specify COE file keywords
other than the pre-programmed values by changing the Radix and Data fields in the
Configure COE File Parameter Names area of the Memory Editor Control Panel.

Importing a CSV File

The Memory Editor can import a CSV (Comma delimited) file saved from Microsoft Excel
and generate a COE file containing the memory data values specified in the CSV file.

The CSV import allows you to specify memory values in a Microsoft Excel spreadsheet,
using mathematical operations and data concatenations in the cells of the spreadsheet
instead of specifying each value individually.

To import a CSV file into the Memory Editor:

1. In the Memory Editor Control Panel, select File — Import — CSV flle.

2. Inthe Open Memory Definition dialog box, type the name of the CSV file in the File
Name text field

OR
Click the Browse button and navigate to the CSV file.
In the Open Memory Definition dialog box, click Open.

4. Inthe Memory Editor Settings dialog box, specify the Memory Depth, Word Width,
Address Radix, Data Radix, and Start Address of the memory block.

These fields are described in Table 6-5.

Table 6-5: Memory Editor Settings Dialog Box Fields

Field Description
Memory Depth The number of data words the CSV file represents. The
maximum depth allowable is 1048576.
Word Width The number of bits making up a memory word.
Address Radix The radix used for specifying memory address values
(for example, binary, hexadecimal).

CORE Generator Guide

www.xilinx.com 115
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 6: The Memory Editor

Table 6-5: Memory Editor Settings Dialog Box Fields

Field Description
Data Radix The radix used to specify the value of data words (for
example, binary or hexadecimal). If you are specifying a
Data Radix of 10 (decimal), you can select 10 (signed) or
10 (unsigned). If the values are signed, the MSB is the
sign bit.

Start Address The starting address for the data words in the CSV file.
Addresses in the Memory Editor will be filled
sequentially starting at this address.

5. Click OK.

In the Memory Editor Control Panel, the name of the CSV file appears as the Memory
Block Name, and the settings specified when you imported the file appear in the Block
Depth, Data Width, Address Radix, and Data Radix fields.

In the Memory Contents Window, the memory locations will be filled in with the data
from the CSV file. Locations will be filled in sequentially beginning with the Start
Address you specified.

6. Inthe Memory Editor Control Panel, configure the other fields as needed: Default
Word, Default Pad Bit Value, and Pad Direction.
Change the COE File Radix and Data keywords to the required values, if needed.

8. In the Memory Contents window, add or modify values as desired.
Values must be set to conform to the options (Data Width, Pad Bit Value, and others)
set in the Memory Editor Control Panel.

9. Select File —» Generate in the Memory Editor Control Panel.

10. In the Generate dialog box, select COE File(s) (for CORE Generator) and enter a
directory in which the COE file will be saved.

11. Click OK.

The Memory Editor saves the information about the new block in the CGF file and
writes a COE file for the block. The COE file has a name in the form
cgffilename_blockname.coe, where cgffilename is the name of the CGF file and blockname is
the Memory Block Name specified in the Memory Editor Control Panel.

116 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Generating a CSV File ST XILINX®

Generating a CSV File

The Memory Editor can generate a CSV (Comma delimited) file for each memory block in
the CGF file currently loaded in the Memory Editor Control Panel. The output CSV files
can be opened in Microsoft™ Excel.

In an output CSV file, each Memory Editor data word will appear on a separate line. When
this file is opened in Excel, each data word will appear in a single cell, and the cells will be
arranged vertically one cell per row.

To generate CSV files representing the memory blocks in the Memory Editor:

1. Inthe Memory Editor Control Panel, select File — Generate.

2. Inthe Generate dialog box, select CSV File(s) and enter a directory in which the CSV
files will be saved.

3. Click OK.

The Memory Editor saves a CSV file for each memory block contained in the currently
loaded CGF file. Each CSV file has a name in the form cgffilename_blockname.csv, where
cgffilename is the name of the CGF file and blockname is the Memory Block Name
specified in the Memory Editor Control Panel.

CGF File Format

The following is the general format of a CGF file:
Keyword=Value

Any lines following the string, #data, that do not start with a# sign are treated as data lines.
Any data lines that start with the @ sign are treated as address values.

Sample CGF and COE Files

The following sections show sample CGF files and COE files for a memory consisting of
one block and a memory consisting of multiple blocks.

Sample CGF and COE Files — Single Memory Block

The examples below show the CGF file and COE file generated for a memory consisting of
one block.

Sample CGF File Specifying a Single Memory Block (single.cgf)

#version2.0

#menory_bl ock_nane=ti ger

#bl ock_dept h=14

#dat a_wi dt h=8

#defaul t _word=0

#def aul t _pad_bit _val ue=1
#pad_direction=l eft

#dat a_r adi x=16

#addr ess_radi x=10

#coe_radi x=MEMORY_I NI TI ALI ZATI ON_RADI X
#coe_dat a=MEMORY_I NI TI ALI ZATI ON_VECTOR
#dat a=

@

CORE Generator Guide www.xilinx.com 117
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 6: The Memory Editor

2b
3c
@i
28
12

#end

COE File Generated from single.cgf (single_tiger.coe)

MEMORY_I NI TI ALI ZATI ON_RADI X=2
MEMORY_I NI TI ALI ZATI ON_VECTOR=
11111010,
00101011,
00111100,
11110000,
11110000,
11110000,
11110000,
11110000,
11110000,
11110000,
11110000,
00101000,
00010010,
11110011,

Sample CGF and COE Files — Multiple Memory Blocks

The examples below show the CGF file and COE file generated for a memory consisting of
multiple blocks.

Sample CGF File Defining 3 Memory Blocks (multiple.cgf)

#version2.0

#menory_bl ock_name=bl ock1l
#bl ock_dept h=32

#dat a_wi dt h=5

#def aul t _wor d=00

#def aul t _pad_bit _val ue=0
#pad_direction=right

#dat a_r adi x=2

#addr ess_radi x=10
#coe_radi x=MEMORY_I NI TI ALI ZATI ON_RADI X
#coe_dat a=MEMORY_I NI TI ALI ZATI ON_VECTOR
#dat a=

@

11

01

@B

11

10

01

@4

01

01

118 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Sample CGF and COE Files

$7XILINX°

11

@6

01

11

10

01

#end

#menory_bl ock_name=bl ock2
#bl ock_dept h=256
#dat a_w dt h=12
#defaul t _word=1

#def aul t _pad_bit _val ue=0
#pad_di rection=|l eft
#dat a_r adi x=8

#addr ess_radi x=2
#coe_radi x=MEMORY_I NI TI ALI ZATI ON_RADI X
#coe_dat a=MEMORY_I NI TI ALI ZATI ON_VECTOR
#dat a=

@00

253

121

@101

3

771

@o101

676

531

111

2

@.00001

666

35

46

171

@.0000011

777

123

001

@.0000111

12

@.1100000

3

2

5

67

76

#end

#menory_bl ock_nane=bl ock3
#bl ock_dept h=16
#dat a_wi dt h=6
#defaul t _word=0

#def aul t _pad_bit _val ue=0
#pad_direction=right
#dat a_r adi x=10

#addr ess_r adi x=8
#coe_radi x=MEMORY_I NI TI ALI ZATI ON_RADI X
#coe_dat a=MEMORY_I NI TI ALI ZATI ON_VECTOR
#dat a=

@

CORE Generator Guide

www.xilinx.com
1-800-255-7778

119

http://www.xilinx.com

S XILINX® Chapter 6: The Memory Editor

#end

COE file generated for block #1 of the memory specified by the CGF file
multiple.cgf (multiple_blockl.coe)

MEMORY_| NI TI ALI ZATI ON_RADI X=2;
MEMORY_I NI TI ALI ZATI ON_VECTOR=
11000,
01000,
00000,
00000,
00000,
00000,
00000,
00000,
11000,
10000,
01000,
00000,
00000,
00000,
01000,
01000,
11000,
00000,
00000,
00000,
00000,
00000,
00000,
00000,
00000,
00000,
01000,
11000,
10000,
01000,
00000,
00000;

120 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Sample CGF and COE Files ST XILINX®

COE File Generated for Block #2 of the Memory Specified by the CGF File
multiple.cgf (multiple_block2.coe)

MEMORY_I NI TI ALI ZATI ON_RADI X=2
MEMORY_I NI Tl ALI ZATI ON_VECTOR=
000000000001,
000000000001,
000000000001,
000000000001,
000010101011,
000001010001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000011,
000111111001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000110111110,
000101011001,
000001001001,
000000000010,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000110110110,
000000011101,
000000100110,
000001111001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,

CORE Generator Guide www.xilinx.com 121
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 6: The Memory Editor

000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,

122 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Sample CGF and COE Files ST XILINX®

000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000111111111,
000001010011,
000000000001,
000000000001,
000000001010,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,

CORE Generator Guide www.xilinx.com 123
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 6: The Memory Editor

000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000011,
000000000010,
000000000101,
000000110111,
000000111110,
000000000001,

124 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Sample CGF and COE Files ST XILINX®

000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,
000000000001,

COE File Generated for Block #3 of the Memory Specified by the CGF File
multiple.cgf (multiple_block3.coe)

MEMORY_| NI TI ALI ZATI ON_RADI X=2;
MEMORY_| NI TI ALI ZATI ON_VECTOR=
110000,
000000,
000000,
000000,
101100,
100000,
110000,
101100,
110111,
000000,
101000,
000000,
000000,
000000,
000000,
000000;

CORE Generator Guide www.xilinx.com 125
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 6: The Memory Editor

126 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

SXILINX®

Chapter

The Updates Installer

2

Overview

Features

This chapter describes the Updates Installer tool. The chapter contains the following
sections.

e “Overview”

e “Features”

» “Install Package Definition”

e “Setting Up your Environment”

« “Installing Cores using the Graphical User Interface”
e “Running Get Models”

The Updates Installer is a CORE Generator™ utility which allows you to install CORE
Generator IP and software updates from the Xilinx™ IP Center. The Updates Installer
extracts the files from the IP updates (ZIP or JAR) and deposits them into your Xilinx

installation directory.

The following is a list of features for the Updates Installer.

Easy access from the CORE Generator Tools menu.

Automatically displays the latest CORE Generator IP Updates available on the Xilinx
website.

Automatically loads the URL for each update package selected from the available
packages list.

Performs dependency checks and alerts you to packages that need to be installed first.

Handles IP update package download (a URL must be specified), archive extraction,
and log file creation.

Automatically installs updates to the proper location.
Detects IP and CORE Generator software updates which have already been installed.

Automatically runs the Get Models utility to extract all HDL simulation models
bundled with the downloaded IP package.

Reports installation success or failure.

CORE Generator Guide

www.xilinx.com 127
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 7: The Updates Installer

Install Package Definition

An Install Package is an archive or file in the ZIP or JAR (JAVA Archive) format which
contains files needed by the Updates Installer to install an IP, or set of IP (the installer
executables). The Install Package also contains files needed by the CORE Generator™ to

support the generation of new cores and may also include updates to the CORE Generator
software.

Setting Up your Environment

To take advantage of the Updates Installer, you must ensure that your system can connect
to the Internet. If you are operating behind a firewall, you need to configure your
proxyHost and proxyPort settings.

The Updates Installer attempts to make an Internet connection when the tool starts up
from the Tools menu (Tools — Updates Installer) and at various other times during the
update procedure. If the connection attempt times out, the following dialog box appears,
giving you the opportunity to change your proxy settings.

Connection timed out x|

@ The CORE Generator Updates Installer must cannect to the Xiling
IPCenter in order to display all the latest updates.

Ifyou are behind a firewall, you may need to set vour proxy host

and prosy port. Wiould wou like to change your proxy settings now'’y
Click an Mo to run the Installer without displaying all the latest updates.

o |

Figure 7-1: Connection Timed Out Dialog Box

You can set the proxy settings using the Proxy settings dialog box, as shown in the
following figure.

Ef Proxy Settings x|

Prowy Host: |

Froxy Port: |

Change magirmurm time ta wait for netwark connection ta |ED LI |secsL|
Set Cancel |

Figure 7-2: Proxy Settings Dialog Box

128 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Setting Up your Environment ST XILINX®

Proxy Settings

The Proxy Settings Dialog box contains the following fields.

* Proxy Host
Contact your system administrator for the name of your Proxy Host.

* Proxy Port
Contact your system administrator for the number of your Proxy Port.

¢ Maximum time to wait for network connection

This is the amount of time for which the Updates Installer will attempt to make a
connection before asking whether you want to change your proxy settings or stop

trying.

The default time your system waits before timing out may be shorter than the value
specified here. You cannot use this setting to make your system wait longer for a
connection than it is allowed to.

If the Updates Installer cannot make an Internet connection, you can still use the tool to
install already downloaded packages. However, you will not be able to access information
on what IP Updates packages are currently available or take advantage of the automated
Web download process. You will need to download the IP Update archive(s) through your
web browser or via FTP, and the IP update must be in the ZIP or JAR file format (TAR files
are not supported). Once the archives have been downloaded, you can install them using
the Updates Installer by specifying the location of the downloaded archives.

Web Browser Location

The Updates Installer uses your web browser to display any online documentation
associated with an update package.

To specify the location of your web browser, follow these steps.

1. Inthe CORE Generator window, select File - Preferences.

2. Inthe Location of Web Browser field, enter the appropriate path to your web
browser.

User Registration

To download IP Update packages using the Updates Installer, you must be registered with
the Xilinx website. To register, follow these steps.

1. Access the Xilinx website, http://www.xilinx.com, through your web browser.

2. Click the my profile link at the lower lefthand corner of this web page.
3. Click the Create an Account button and complete the registration questions.

Once you are registered, you can access IP updates when you enter the Xilinx website
using the Updates Installer.

You may also need to be registered at the IP Update lounge to access a given IP package.
For example, to access the standard CORE Generator™ updates, access the registration
link at this location:

http://www.xilinx.com/ipcenter/coregen/updates.htm

CORE Generator Guide

www.xilinx.com 129
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/ipcenter/coregen/updates.htm
http://www.xilinx.com

S XILINX® Chapter 7: The Updates Installer

Required Inputs for IP Update Packages

The Updates Installer requires information on the location of each IP update package it
must install. You can specify location information in either of these ways:

* A URL pointing to the zip/jar archive corresponding to the update
* Afully qualified or relative path to the zip/jar file on your local hard drive

Note: Use this option if you already downloaded an IP Update to your local hard drive, but would
like to have Updates Installer install the downloaded package.

Installing Cores using the Graphical User Interface

The Updates Installer GUI (Graphical User Interface) allows centralized access to packages
available for installation and to packages already installed.

CORE Generator Updates Installer x|

Select all packages which you would like to install:

Available Packages: Pay Care? Info: Installed? |

[5.1 IP Update #1
[58141 IF Update #2 8
[1 5.1 IP Update #3

= E

Packages will be installed into the fallowing directany:
H:ilim:

Install All | Cancel

Figure 7-3: Updates Installer GUI

The Selection Pane

The center region of this GUI displays a list of packages that are available for installation.
Each row corresponds to a single install package and is divided into these fields:
* Available Packages
Allows you to select which package you want to add to the Install Queue.
« Pay Core?
Indicates whether this is a pay core.
* Info:
Provides a link to online documentation for the package.
* Installed?

Indicates whether the corresponding package is already installed.

130

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Running Get Models

$7XILINX°

If your proxy settings are not configured correctly, or if you are unable to connect to the
Xilinx™ IP Center, the selection pane will not display in the GUI. If this occurs, you must
manually enter the URL or the explicit path to the packages you wish to install.

Selecting Packages to Install

To install packages using the Updates Installer GUI, follow these steps.

1. Ifyou wish to add a JAR or ZIP file to the list displayed in the GUI, click the Add
Package button, browse to the location of the package you wish to install in the
Choose Install Package dialog box, and click Add to List.

2. Inthe Updates Installer GUI, click the check boxes next to the Install Packages you
want to install.
3. Toinstall the selected packages, click the Install All button.

Note: The CORE Generator™ application will close and a confirmation dialog box will display when
the install is complete. The exact amount of time of this process will depend on the size and number
of packages you are installing.

Running Get Models

As part of the installation process, the Install Cores Tool automatically runs the Get Models
tool after the extraction process is complete for each IP package. (Certain packages contain
specific instructions indicating that Get Models should not be run.) The confirmation
dialog that appears at the end of the extraction process will indicate when Get Models is
invoked. Get Models is run once for each package that is installed.

Get Models extracts the HDL behavioral models of the cores it has installed and copies
them to $XILINX/verilog/src/XilinxCoreLib and $XILINX/vhdl/src/XilinxCoreLib,
respectively. It also updates analyze order files

($XILINX/verilog/src/ XilinxCorelib/verilog_analyze_order and

$XILINX/vhdl/src/ XilinxCoreLib/vhdl_analyze_order) which specify the order in which
the simulation models should be compiled for pre-compiled HDL simulators.

CORE Generator Guide

www.xilinx.com 131
1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 7: The Updates Installer

132 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

SXILINX®

Appendix A

Get Models

This appendix describes the GetModels program. The appendix includes the following
sections:

* “GetModels Overview”
e “Command line Syntax”
* “Required Parameters”
e “Optional Parameters”
e “lnputs”

e« “Outputs”

GetModels Overview

The Get Model s program is a tool that is sometimes needed to extract the Verilog™ or
VHDL behavioral models embedded within a user’s CORE Generator™ System
installation. GetModels extracts these models to a single, central location. It also generates
a file (verilog_analyze_order or vhdl_analyze_order) for the CORE Generator Verilog and
VHDL libraries. The file specifies the order in which the models must be compiled for
compiled HDL simulators.

In the 3.1i and later releases of the Xilinx™ software CDs, the HDL functional simulation
libraries for CORE Generator cores are provided pre-extracted in the
$XILINX/vhdI/src/ XilinxCoreLib and $XILINX/verilog/src/XilinxCoreLib directories.
Since new models are also provided pre-extracted with any 6.1i IP updates you may
subsequently install, you do not usually need to run GetModels. GetModels needs to be
run only if the install extraction fails, or if you install third party IP modules which have
been configured so that they are catalogued, elaborated and delivered by the CORE
Generator.

In a Xilinx software installation, CORE Generator models may exist in the CORE
Generator tree ($XILINX/coregen) in either JAR archive or ASCII source file format. For
Verilog interpretive simulators such as Cadence Verilog-XL, extracting the behavioral
models to a single library directory collects them together in one location so that they can
be referenced from a common location by the simulator. For compiled simulators (all
VHDL simulators, and some Verilog simulators such as MTI ModelSIM, Synopsys VCS
and Cadence NC-Verilog), extracting the behavioral models to a single library directory
allows them to be conveniently analyzed by the Verilog or VHDL simulator.

You can also use GetModels to extract individual behavioral models for specific CORE
Generator modules to your project directory if necessary.

CORE Generator Guide

www.xilinx.com 133
1-800-255-7778

http://www.xilinx.com

S XILINX® Appendix A: Get Models

GetModels can either be invoked from the CORE Generator™ Tools menu, or from the
command line by typing the get _nodel s command line (see “Command line Syntax”).
The Tools menu dialog box for GetModels is shown following.

Get Models x|

Flease enter or browse for the source lacation ofthe models and
destination for Yerilog, WHDOL, or hath.

mModels Source Directory: |C:1c0regen_prnjsl Browse Falder... |

[™ “erilog Destination Directory: | Browse Folder... |

[~ wHOL D&stinatiun Directory: | Browse Folder... |
oK Dismiss

Figure A-1: GetModels Dialog Box

The syntax for running GetModels in command line mode is as follows:

Command line Syntax

get_nodels [-h | -help] -vhdl | -verilog
[-dest destination_directory]

Required Parameters
-vhdl | -veril og

Using these parameters extracts Verilog™ or VHDL behavioral models only and creates
the appropriate verilog_analyze_order or vhdl_analyze_order file. You must specify either
the -veri |l og or - vhdl option when running the get_models command.

Optional Parameters

- dest destination_directory

Use this parameter as the target location for the XilinxCoreLib library and any
VendorCorelLib libraries, if applicable. The metacharacters “.”’and *“..” are supported.

For most standard installations, only a XilinxCoreLib subdirectory is created by
get_models in the specified directory. The default location of destination_directory when the
-veri | og option is specified is $XILINX/verilog/src. The default location of
destination_directory when - vhdl is specified is $XILINX/vhdl/src. For networked UNIX
workstations, you may need system administrator privileges to extract models to this
Xilinx software directory location.

134 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

Inputs

$7XILINX°

Inputs

Outputs

The inputs to GetModels are the CORE Generator™ behavioral models installed in your
Xilinx CORE Generator System repository. The models exist in either of the following two
formats:

» Archived together with other data files associated with a given IP module in a JAR
(JAVA Archive format) file, located under $XILINX/coregen/ip/com/xilinx.

* Non-archived source file format, V and VHD files, in a “simulation” subdirectory of
an IP module directory. CORE Generator IP module data files are located under the
directory $XILINX/coregen/ip/xilinx.

Note: Itis usually not necessary to specify the path to these inputs when running GetModels. The
path to the behavioral models is implied by the value of your XILINX environment variable.

The get_models utility produces a directory of extracted source format Verilog™ or VHDL
behavioral models to a library named XilinxCoreLib or VendorCoreLib. Information on the
GetModels extraction run is logged to getmodels.log.

For Verilog compiled simulators, the required compilation order is indicated in a file
named verilog_analyze order. The order specified in this file must be followed if you wish
to reference this library using the - y Verilog simulator option.

VHDL simulators require models to be compiled from the bottom-up using lower level
blocks before higher level blocks. There can be more than one compile order that meets this
bottom-up order requirement. The order specified in the vhdl_analyze order file is just
one such combination.

CORE Generator Guide

www.xilinx.com 135
1-800-255-7778

http://www.xilinx.com

S XILINX® Appendix A: Get Models

136 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

SXILINX®

Appendix B

Configuration Files and Global
Preferences

This appendix describes the following features:

e “CORE Generator Configuration Files”
e “Global Preferences”

CORE Generator Configuration Files

The following sections describe some CORE Generator™ configuration files.

coregen.prj File

The coregen.prij file is the CORE Generator project file. The coregen.prj file is automatically
created in the project directory whenever you create a new project. It contains a record of
project-specific property settings, information on versions of the COREs available to the
project, and user-specified output file formats. To be a valid CORE Generator project, the
project directory must contain a valid coregen.prj file.

The information in the coregen.prj file includes a list of all the IP cores and versions that are
available to the project.

The coregen.prj file is a configuration file which is created, read, and modified by the
CORE Generator System for project management purposes and should not be altered by
the user.

.coregen.prf File

The .coregen.prf file is the Xilinx™ CORE Generator preferences file for UNIX™
workstations. This is an ASCII option settings file that records various user specific
preference settings for the CORE Generator GUI. This file consists of a mix of comment
lines and property specification lines. Comment lines begin with the # (octothorpe)
character and designate a line which is ignored when the file is read by the CORE
Generator System. The format for a line specifying a property in the preference file is
PropertyName=Value. For example,

Al waysOpenLast Proj ect =t rue

Each Property Name represents a particular property within the Xilinx CORE Generator,
and the corresponding Value Field is the value to be applied to that property.

Your preference settings are stored in a .coregen.prf in your home directory on UNIX
platforms. During start-up, and after any optional coregen.ini file is read (Workstations

CORE Generator Guide

www.xilinx.com 137
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Appendix B: Configuration Files and Global Preferences

only), CORE Generator™ System searches your home directory for a .coregen.prf file. If
this file is found it is loaded, and all preferences contained in it override the default CORE
Generator System preference settings. If no preference file is found, as in the case of a first-
time user, the various preference values take on their hard coded default values.

The first time you start up the CORE Generator System, no .coregen.prf preference file
exists. It is created the first time you exit out of the CORE Generator System based on
settings you have specified during a project session. The file is automatically written to

your home directory.

On Windows platforms, user preferences are stored in the Windows registry.

Supported Preference File Properties

The following table shows the list of supported preference file properties:

Table B-1: Preference File Table

Field Value Description
AlwaysOpenLastProject | False Do not start CORE Generator
System in the last project.
True Always start CORE Generator in
the last active project.
LastNProjects Integer value Recalls number of previously
opened projects (default=8).
LastProject <path_to_last_project> Path to last project you opened.
LastProject<n> <path_to_project_n> Path to project n in list of

previously open projects.

OverwriteFilesDefault

False

True

Prompt user before overwriting
files during elaboration.

Automatically overwrite design
files during elaboration.

WebBrowser <path_to_web_browser> | Set fully qualified path to your
web browser.
PDFViewer <path_to_pdf_viewer> Set fully qualified path to your

Acrobat™, Netscape™, or other
PDF viewer.

138

www.xilinx.com
1-800-255-7778

CORE Generator Guide

http://www.xilinx.com

Global Preferences

$7XILINX°

Preference File Example

The following is an example of a workstation preference file:

#Cor egen preferences
#Fri Apr 21 13:46:57 PDT 2000

Last Proj ect =/ hone/ nyprojects/fir_filter

Al waysOpenlLast Proj ect = fal se
OverwiteFiles = true

WebBr owser = /usr/bin/ netscape

PDFVi ewer = /usr/| ocal/bin/acroread

Global Preferences

A global preference is a persistent property that is user specific and applies to all projects.
These are set either through the Preference Options dialog box available from the main
CORE Generator application GUI, or by using SET commands in a command file. The
persistent values are stored in a file named .coregen.prf in $HOME on UNIX platforms. On
WIN/NT platforms the persistent values are stored in the Windows Registry in this

location:

HKEY_CURRENT_USER\Software\Xilinx\Coregen\Preferences

The following table describes the Global Preferences commands, values, and their

functions:

Table B-2: Global Preferences

Property Values Description
AlwaysOpenLastProject True | False If True, upon invoking CORE
Generator™, the last project used
will be opened automatically.
Default is False.
CloselPGUIAfterGeneration | True | False If True, the IP customization GUI

for a core will close automatically
after the core is generated. If False,
the GUI will remain open after the
core is generated. The default is
False.

DefaultRepositories <repository_list>

When creating a new project or
converting a deprecated project
use these IP repositories for
configuring the project initially.
The default is the directory
$XILINX/coregen/ip/xilinx.

DisplaySupported True | False

Cores that do not support the
family selected for the current
project are normally displayed as
grayed out in the main CORE
Generator GUI. If this is set to
True, unsupported cores are not
displayed at all.

CORE Generator Guide

www.xilinx.com
1-800-255-7778

139

http://www.xilinx.com

$7 XILINX°

Appendix B: Configuration Files and Global Preferences

Table B-2: Global Preferences

Property

Values

Description

DumpCoreStatistics

True | False

The Core Viewer, when invoked,
displays statistics on resource
usage as well as the core footprint.
If set to True, these resource
numbers will also be written out
to the XCO file of the generated
core.

Can be set by batch command
only.

LastNProjects

<Integer>

Number of last accessed projects
to be stored in the Preference
Manager. Default is 8.

OverwriteFilesDefault

True | False

If a new project is created and the
project property OverwriteFiles is
not set, then the overwrite
behavior will be determined by
this preference. Default is False.

PDFViewer

<PDF_viewer_path>

Set the path to the PDF/Acrobat
file reader of choice. Default is the
path to acroread.

ProxyHost

<host_name>

Specify the proxy host to be used
with the selected web browser.

ProxyPort

<port_id>

Set the proxy port of the proxy
host to be used with the selected
web browser.

WebBrowser

<browser_path>

Set the path to the web browser of
choice. Default is the path to
netscape.

140

www.xilinx.com
1-800-255-7778

CORE Generator Guide

http://www.xilinx.com

2 XILINX®
Appendix C

Troubleshooting the CORE Generator
System

This appendix contains solutions and resources for using the CORE Generator™ System.
The appendix contains the following sections:

e “Finding Solutions”
e “Additional Resources”
e “Obtaining Customer Support”

Finding Solutions

Following are some methods of finding solutions to CORE Generator problems:

e Check the coregen.log file and module_name.xco file for diagnostic information.
¢+ Windows™ — The coregen.log file is located in %XILINX%/coregen/tmp.
¢+ UNIX™ Workstations — This file is written to the current project directory.

» If your coregen.prj project information file becomes corrupted, delete it and recreate
the project in that directory by selecting the New Project option (Project » New) in the
CORE Generator System. A symptom of a corrupted coregen.prj occurs when there
are missing modules during startup causing an error message on your UNIX
workstation.

LD LI BRARY errors. Verify that LD LI BRARY_PATH includes the path to
%X LI NX/ bi n/ pl at f orm

» To debug startup problems, edit coregen.bat to add a —d (debug mode) option to the
java.exe command line in coregen.bat. The —d option causes the CORE Generator
System to display a detailed report of all data files being loaded, miscellaneous
operations, and debug-related information.

CORE Generator Guide www.xilinx.com 141
1-800-255-7778

http://www.xilinx.com

$7 XILINX°

Appendix C: Troubleshooting the CORE Generator System

Additional Resources

Following are some additional CORE Generator™ resources:

For general information on Cores, use the following website:

http://ww. xilinx.comipcenter

Use our web-based search engine to search the Xilinx™ Answers Database. Use the
following website:

http://ww. support. xilinx.conm support/searchtd. htm

This database contains information on all known problems with Xilinx hardware and
software. Xilinx Applications Engineers add to this knowledge base daily.

To ensure that you have the latest Xilinx Software Service Packs, use the following
path:

http://ww. support.xilinx.com support/techsup/sw updates

For the latest news on the CORE Generator System, including announcements about
new IP modules and technical tips, see the Xcell Journal Online at the following
website:

http://ww. xilinx.com publications/xcellonline

For Solution Records related to a specific core, click the Web Links tab in the core’s
customization GUI. Then click Solution Records for this Core.

AllianceCORE Modules

Contact the appropriate third party AllianceCORE™ provider as indicated on the CORE
Generator data sheet for that module.

Obtaining Customer Support

You can obtain customer support by calling Xilinx support at:

1-800-255-7778
or
1-408-559-7778

or by opening a web case at:

http://ww. xilinx.com support/techsup/tappinfo.htm

142

www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com/ipcenter
http://www.support.xilinx.com/support/searchtd.htm
http://www.support.xilinx.com/support/techsup/sw_updates
http://www.xilinx.com/publications/xcellonline
http://www.xilinx.com
http://www.xilinx.com/support/techsup/tappinfo.htm

Index

Symbols
.coregen.prj file 137
A

Acrobat 17

Adobe Acrobat 17

AlwaysOpenLastProject property (in
preference file) 138

Answers Database 142
ASCII equivalents (Memory Editor) 112
ASY file 55, 66

B

batch mode 65, 67
command line options 67
behavioral simulation 79

BRANCH_LENGTH_VECTOR key-
word 62

BusFormat (project property) 74

C

Cadence
schematic design flow 78
catalog browser 29
CGF file 54, 107
samples 117
COE file 54, 60
examples 62
generating in Memory Editor 112

generating multiple in Memory Edi-
tor 114

keywords 61, 115
samples 117
COE file keywords 61
COEFDATA keyword 62
command line options 20
commands
COPYXCPFILES 71
CSET 71
END 71
EXECUTE 71
GENERATE 71
in XCO files 72
in XCP files 72
LAUNCHXCO 71

LAUNCHXCP 71
LOCKPROPS 71
NEWPROJECT 71
REGENERATEALLCORES 71
SELECT 71
SET 72
SETPROJECT 72
UNLOCKALLPROPS 72
UNLOCKPROPS 72
component names
requirements 57
compxlib (Compile Xilinx HDL Libraries)
80

configuration files 137
console window 25
copying projects 52
COPYXCPFILES command 71
core customization GUIs 57
core data sheets 27
Core Viewer 58
coredb utility 80
coregen.bat file 141
coregen.cmd file 76
coregen.fin file 76
coregen.prj file 137
CoreGenPath (global property) 73
cores 45

installing 32

new 32

regenerating 46

removing from view 52
cores catalog browser 24, 29
CoreSelect (global property) 73

Create NDF Synthesis Optimization In-
terface for NGC Cores 43

CSET command 71
CSV file
generating (Memory Editor) 117
customer support 142
customization GUI (for core) 57

D

data sheets 27, 49

Design Architect (Mentor)
schematic design flow 78

design entry 38

design flow options 39

design flows
Cadence 78
Design Architect (Mentor) 78
ISE 77
Mentor 77
VHDL 91
DesignFlow (project property) 74
dialog box fields 25
dialog boxes
Preference Options 19
Project Options 36

E

EDN file 55
elaboration options

Create NDF Synthesis Optimization
Interface for NGC Cores 43

Generate netlist wrapper with 10
pads 42

Remove Placement Attributes 43
END command 71
eProduct

schematic design flow 77
EXECUTE command 71

ExpandedProjectPath (project property)
74

exporting CSV file 117

F

files
.coregen.prj 137
ASY 55, 66
CGF 54, 107, 117
COE 54,60, 62, 115, 117
configuration 137
coregen.bat 141
coregen.cmd 76
coregen.fin 76
coregen.prj 137
corename_flist.txt 55
corename_padded.edn 55
Csv 117
EDN 55
get_models.log 55
hdl wrapper 80
input 54
input polling 76

CORE Generator Guide

www.xilinx.com
1-800-255-7778

143

http://www.xilinx.com

$7 XILINX°

instantiation template 80
MIF 55
NDF 55
NGC 55
output 55
output polling 76
V 55
VEO 55, 100
verilog_analyze_order 55, 81
VHD 56
vhdl_analyze_order 56, 81
VHO 56, 103
XCO 54,56, 72
XCP 54,56, 72
XSF 56, 66
flow vendor 37
FlowVendor (project property) 74
formal verification 42
Formality 42
Verplex 42
Formality (formal verification) 42
FormalVerification (project property) 74

G

GENERATE command 71
Generate netlist wrapper with 10 pads 42
generated modules window 24
generating CSV file 117
get_models 80
get_models.log file 55
GetModels 133
global properties 73
GUI
console window 25
cores catalog browser 24
generated modules window 24
main window 22
menu bar 23
standard toolbar 23
view catalog toolbar 23

H

HDL design flow
flow chart 79
HDL design flows
design flows
HDL 79
HDL wrapper files 80

implementation netlists
formats (Verilog flow) 90
in Verilog flow 89
in VHDL flow 100
Innoveda
schematic design flow 77
input files 54
input polling files 76
instantiation template files 80
instantiation templates
VEO 100
VHO 103
ISE
schematic design flow 77

L

LastNProjects property (in preference
file) 138

LastProject property (in preference file)
138

LastProjectn property (in preference file)
138

LAUNCHXCO command 71
LAUNCHXCP command 71
libraries

compxlib 80

XilinxCORELib 79
LockProjectProps (global property) 73
LOCKPROPS command 71

M

MEMDATA keyword 62
memory block operations 111, 112
memory block properties 109
Memory Editor 107

GUI 108

memory block properties 109

MEMORY_INITIALIZATION_RADIX
keyword (COE file) 61, 115

MEMORY_INITIALIZATION_VECTOR
keyword (COE file) 62, 115

Mentor
schematic design flow 78
Mentor design flow 77
menu bar 23
MIF file 55

N

names, for CORE Generator modules 57
NDF file 55

netlist bus format 39

new project, creating 33

NEWPROJECT command 71

NGC file 55

O

obsoleted cores 30

opening a project 35

output files 55

output polling files 76

output products 40, 41
OutputOption (project property) 75
overwrite files 38

OverwriteFiles (project property) 75

OverwriteFilesDefault property (in pref-
erence file) 138

P

PATH variable 17
PATTERN keyword 62
PDF reader 48
PDF viewer

specifying location 48

PDFViewer property (in preference file)
138

polling mode 76
input polling files 76
output polling files 76
Preference Options dialog box 19
preferences
setting 19
Project Options dialog box 36
project options, changing 36
project properties 74
ProjectOverride (global property) 73
ProjectPath (project property) 75
projects
copying 52
creating 33
opening 35
options 36
properties
global 73
CoreGenPath 73
CoreSelect 73
LockProjectProps 73

144

www.xilinx.com
1-800-255-7778

CORE Generator Guide

http://www.xilinx.com

$7XILINX°

ProjectOverride 73
Username 73
in preference file 138
AlwaysOpenLastProject 138
LastNProjects 138
LastProject 138
LastProjectn 138
OverwriteFilesDefault 138
PDFViewer 138
WebBrowser 138
project 74

BusFormat 74
DesignFlow 74
ExpandedProjectPath 74
FlowVendor 74
FormalVerification 74
OutputOption 75
OverwriteFiles 75
ProjectPath 75
SimElabOptions 75
SimulationOutputProducts 75
XilinxFamily 75

proxy host 49

proxy port 49

R

RADIX keyword 61

recustomizing 45

recustomizing cores 45
REGENERATEALLCORES command 71
regenerating cores 46

Remove Placement Attributes 43

S

schematic design flow 77
SELECT command 71
SET command 72
SETPROJECT command 72
SimElabOptions (project property) 75
simulation
behavioral 79
simulation library (XilinxCoreLib) 79

SimulationOutputProducts (project prop-
erty) 75

Solution Records (for cores) 142
standard toolbar 23

T

target architecture 37

toolbars
standard 23
view catalog 23
troubleshooting 141

U

UNIX workstation environment 18
UNLOCKALLPROPS command 72
UNLOCKPROPS command 72
Use Proxy 49

Username (global property) 73

V

V file 55
VEO file 55, 100
Verilog design flow
flow chart 82
myadder8.veo instantiation 86
verilog_analyze_order file 55, 81
Verplex (formal verification) 42
VHD file 56
VHDL design flow 91
flow chart 91
implementation netlist 100
vhdl_analyze_order file 56, 81
VHO file 56, 103
view catalog toolbar 23

W

web browser 47
specifying location 48

WebBrowser property (in preference file)
138

Windows environment 18

X

XCO file 54, 56

XCO files 72

XCP file 54, 56

XCP files 72

XILINX variable 17

XilinxCoreLib simulation library 79
XilinxFamily (project property) 75
XSF file 56, 66

CORE Generator Guide

www.xilinx.com
1-800-255-7778

145

http://www.xilinx.com

$7 XILINX°

146 www.xilinx.com CORE Generator Guide
1-800-255-7778

http://www.xilinx.com

	Software Manuals
	CORE Generator Guide
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Table of Contents
	1 Introduction
	Overview
	New Features
	Xilinx Smart-IP Technology

	Design Flow
	CORE Version Management
	Obsolete and Removed Cores

	2 Getting Started
	System Requirements and Installation Information
	Starting the CORE Generator
	Starting the CORE Generator From the Windows Environment
	Starting the CORE Generator From the UNIX Workstation Environment
	Starting the CORE Generator from Xilinx ISE
	Setting Preferences

	Command Line Options
	Using the Interface
	Main Window
	Using Dialog Boxes

	Additional Resources
	Accessing Core Data Sheets

	3 Using the CORE Generator
	Using the Cores Catalog Browser
	Sorting the Catalog
	Adjusting Columns and Panels

	Using the Generated Modules Window
	Accessing New and Updated Cores
	Installing New Cores

	Working With Licensed Cores
	Creating a New Project
	Opening an Existing Project
	Changing Project Options
	Output Options – Flow Vendor
	Output Options – Output Products

	Creating a Customized Core
	Recustomizing a Core
	Regenerating a Core
	Selecting Target XILINX FPGA Family Options
	Using the Web Browser and the PDF Viewer
	Setting Preferences
	Location of Web Browser
	Location of PDF Viewer
	Use Proxy
	Proxy Host and Proxy Port
	Automatically open last project
	Automatically overwrite output files
	Only display supported cores for target architecture
	Display obsolete cores
	Close IP Customization Dialog after Generation

	CORE Generator Data Sheets
	Accessing Cores
	Configuring the Cores Catalog Browser
	Adding Core Customizers to the Cores Catalog
	Visibility Example
	Removing Cores from View in the Cores Catalog

	Copying a Project
	Input and Output Files
	Using Core Customization GUIs
	Core Customization GUI Overview
	Naming CORE Generator Modules
	Using Customization GUI Buttons
	Illegal or Invalid Values
	Using the Core Viewer
	Setting Options Using the Core Symbol
	COE Files

	Generating Cores in Batch Mode
	Syntax

	Performing CORE Generator Operations in Xilinx ISE
	Integrating CORE Generator into Applications
	ASY and XSF Symbol Information Files

	4 Batch Mode and Polling Mode
	Batch Mode
	Batch Mode Command Line Options
	Command Files
	coregen.ini/coregen_user_name.ini
	User-Generated Command Files
	XCO Files
	XCP files
	coregen.log

	CORE Generator Commands
	Supported Commands in XCO and XCP Files
	CORE Generator Global Properties
	Project Properties
	Polling Mode
	Output Polling Files
	Input Polling Files

	5 Schematic and HDL Design Flows
	Understanding Schematic Design Flows
	ISE Design Flow
	Mentor Design Flows
	Cadence Design Flow

	Introduction to HDL Design Flows
	HDL Behavioral Simulation Flow Features

	Creating Verilog Designs
	Verilog HDL Design Flow
	Verilog Design Flow Procedure

	Creating VHDL Designs
	VHDL HDL Design Flow
	VHDL Design Flow Procedure

	Using Instantiation Templates
	Using a VEO Instantiation Template File
	Using a VHO Instantiation Template File

	6 The Memory Editor
	Memory Editor Overview
	The Memory Editor GUI

	Creating a Memory with a Single Memory Block
	Adding Additional Memory Blocks to a Memory
	Specifying COE File Keywords
	Importing a CSV File
	Generating a CSV File
	CGF File Format
	Sample CGF and COE Files
	Sample CGF and COE Files – Single Memory Block
	Sample CGF and COE Files – Multiple Memory Blocks

	7 The Updates Installer
	Overview
	Features
	Install Package Definition
	Setting Up your Environment
	Proxy Settings
	Web Browser Location
	User Registration
	Required Inputs for IP Update Packages

	Installing Cores using the Graphical User Interface
	The Selection Pane
	Selecting Packages to Install

	Running Get Models

	A Get Models
	GetModels Overview
	Command line Syntax
	Required Parameters
	Optional Parameters
	Inputs
	Outputs

	B Configuration Files and Global Preferences
	CORE Generator Configuration Files
	coregen.prj File
	.coregen.prf File
	Supported Preference File Properties

	Global Preferences

	C Troubleshooting the CORE Generator System
	Finding Solutions
	Additional Resources
	AllianceCORE Modules

	Obtaining Customer Support

	Index

