

Chip Monolithic Ceramic Capacitors

muRata

Innovator in Electronics

Murata Manufacturing Co., Ltd.

CONTENTS

Par	rt Numbering ————————————————————————————————————	
Sel	lection Guide	
1	for Flow/Reflow Soldering GRM15/18/21/31 Series	
2	for Reflow Soldering GRM32/43/55 Series	1
3	Ultra-small GRM03 Series	1
4	Tight Tolerance GRM03/15 Series	2
5	Thin Type (Flow/Reflow)	2
GR	RM Series Specifications and Test Methods	2
6	Thin Layer Large Capacitance Type	3
7	Low Dissipation Type	3
GR	RM Series Data	4
8	Microchips —	4
9	Capacitor Arrays —	4
10	for Ultrasonic Sensors	5
11	Low ESL	5
12	High Frequency for Flow/Reflow Soldering	6
13	High-Q & High Power Type	6
14	High Frequency Type ————————————————————————————————————	7
ER	A/ERD/ERF/ERH Series Data	8
Pac	ckage ————————————————————————————————————	8
<u> </u>	Caution	8
Not	tice	9
Ref	ference Data	— 9
15	Medium Voltage Low Dissipation Factor	10
16	Medium Voltage High Capacitance for General-Use	10
17	Only for Information Devices/Tip & Ring	11
18	AC250V (r.m.s.) Type (Which Meet Japanese Law)	11
19	Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)	12
20	Safety Standard Recognized Type GD (IEC60384-14 Class Y3)	12

21 Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)	123
22 Safety Standard Recognized Type GB (IEC60384-14 Class X2)	124
GA3 Series Specifications and Test Methods	125
GRM/GR4/GA2/GA3 Series Data (Typical Example)	129
Package	131
	134
Notice	140
ISO 9001 Certifications	143

• Please refer to "Specifications and Test Methods" at the end of each chapter of 6 - 18

/

Part Numbering

Chip Monolithic Ceramic Capacitors

GR M 18 8 B1 1H 102 K A01 K (Part Number)

●Product ID

2Series

Joches		
Product ID	Code	Series
GR	M	Tin Plated Layer
GK	4	Only for Information Devices / Tip & Ring
	F	High Frequency and high Power Type
ER	н	High Frequency and High Power Type (Ribbon Terminal)
	Α	High Frequency Type
	D	High Frequency Type (Ribbon Terminal)
GQ	М	High Frequency for Flow/Reflow Soldering
GM	Α	Monolithic Microchip
GN	М	Capacitor Array
LL	L	Low ESL Wide Width Type
LL	С	Automotive Low ESL Wide Width Type
GJ	М	High Frequency Low Loss Type Tin Plated Type
	6	High Frequency Low Loss Type
GA	2	for AC250V (r.m.s.)
GA	3	Safety Standard Recognized Type
CC	Р	Automotive Soldering Electrode
GC	М	Automotive Tin Plated Layer

3Dimension (LXW)

Code	Dimension (L×W)	EIA		
03	0.6×0.3 mm	0201		
05	0.5×0.5 mm	0202		
08	0.8×0.8 mm	0303		
11	1.25×1.0 mm	0504		
15	1.0×0.5 mm	0402		
18	1.6×0.8 mm	0603		
1D	1.4×1.4 mm			
1X	Depends on individual standards.			
21	2.0×1.25 mm	0805		
22	2.8×2.8 mm	1111		
31	3.2×1.6 mm	1206		
32	3.2×2.5 mm	1210		
3X	Depends on individual standards.			
42	4.5×2.0 mm	1808		
43	4.5×3.2 mm	1812		
52	5.7×2.8 mm	2211		
55	5.7×5.0 mm	2220		

4Dimension (T)

Code	Dimension (T)
2	2-elements (Array Type)
3	0.3 mm
4	4-elements (Array Type)
5	0.5 mm
6	0.6 mm
7	0.7 mm
8	0.8 mm
9	0.85 mm
Α	1.0 mm
В	1.25 mm
С	1.6 mm
D	2.0 mm
E	2.5 mm
F	3.2 mm
М	1.15 mm
N	1.35 mm
R	1.8 mm
s	2.8 mm
Q	1.5 mm
Х	Depends on individual standards.

With the array type GNM series, "Dimension(T)" indicates the number of elements

 $\begin{tabular}{|c|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

5Temperature Characteristics

Temperature Characteristic Codes				Operating			
Code	Public STD (Code	Referance Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Temperature Range	
1X	SL *1	JIS	20°C	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C	
2C	CH *1	JIS	20°C	20 to 125°C	0±60ppm/°C	-55 to 125°C	
2P	PH *1	JIS	20°C	20 to 85°C	-150±60ppm/°C	-25 to 85°C	
2R	RH *1	JIS	20°C	20 to 85°C	-220±60ppm/°C	-25 to 85°C	
2S	SH *1	JIS	20°C	20 to 85°C	-330±60ppm/°C	-25 to 85°C	
2T	TH *1	JIS	20°C	20 to 85°C	-470±60ppm/°C	-25 to 85°C	
3C	CJ *1	JIS	20°C	20 to 125°C	0±120ppm/°C	-55 to 125°C	
3P	PJ *1	JIS	20°C	20 to 85°C	-150±120ppm/°C	-25 to 85°C	
3R	RJ *1	JIS	20°C	20 to 85°C	-220±120ppm/°C	-25 to 85°C	
3S	SJ *1	JIS	20°C	20 to 85°C	-330±120ppm/°C	-25 to 85°C	
3Т	TJ *1	JIS	20°C	20 to 85°C	-470±120ppm/°C	-25 to 85°C	
3U	UJ *1	JIS	20°C	20 to 85°C	-750±120ppm/°C	-25 to 85°C	
4C	CK *1	JIS	20°C	20 to 125°C	0±250ppm/°C	-55 to 125°C	
5C	C0G *1	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C	
6C	C0H *3	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C	
6C	CH *1,*3	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C	
6P	P2H *1	EIA	25°C	25 to 85°C	-150±60ppm/°C	-55 to 125°C	
6R	R2H *3	EIA	25°C	25 to 85°C	-220±60ppm/°C	-55 to 125°C	
6S	S2H *3	EIA	25°C	25 to 85°C	-330±60ppm/°C	-55 to 125°C	
6T	T2H *3	EIA	25°C	25 to 85°C	-470±60ppm/°C	-55 to 125°C	
7C	CJ *1*3	EIA	25°C	25 to 125°C	0±120ppm/°C	-55 to 125°C	
7U	U2J *3	EIA	25°C	25 to 85°C	-750±120ppm/°C	-55 to 125°C	
8C	CK *1,*3	EIA	25°C	25 to 125°C	0±250ppm/°C	-55 to 125°C	
B1	B *2	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
В3	В	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C	
E4	Z5U	EIA	25°C	10 to 85°C	+22, -56%	10 to 85°C	
F1	F *2	JIS	20°C	-25 to 85°C	+30, -80%	-25 to 85°C	
F5	Y5V	EIA	25°C	-30 to 85°C	+22, -82%	-30 to 85°C	
R1	R *2	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R3	R	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C	
R6	X5R	EIA	25°C	-55 to 85°C	±15%	-55 to 85°C	
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C	
C8	X6S	EIA	25°C	-55 to 105°C	±22%	-55 to 105°C	
			222	-25 to 20°C	-4700+100/-2500ppm/°C	25.1.25.5	
9E	ZLM	*4	20°C	20 to 85°C	-4700+500/-1000ppm/°C	-25 to 85°C	

^{*1} Please refer to table for Capacitance Change under reference temperature. *2 Capacitance change is specified with 50% rated voltage applied.

●Capacitance Change from each temperature

JIS Code

· · · · · · · · · · · · · · · · · · ·						
			Capacitance Char	nge from 20°C (%)		
Murata Code	−55°C		−25°C		-10°C	
	Max.	Min.	Max.	Min.	Max.	Min.
1X	-	_	-	-	-	
2C	0.82	-0.45	0.49	-0.27	0.33	-0.18
2P	-	_	1.32	0.41	0.88	0.27
2R		_	1.70	0.72	1.13	0.48
28		_	2.30	1.22	1.54	0.81
2T		_	3.07	1.85	2.05	1.23

^{*3} ER series only. *3,*4 Murata Temperature Characteristic Code.

\(\sum \) Continued from the preceding page.

	Capacitance Change from 20°C (%)						
Murata Code	−55°C		−25°C		−10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
3C	1.37	-0.90	0.82	-0.54	0.55	-0.36	
3P	-	_	1.65	0.14	1.10	0.09	
3R	-	-	2.03	0.45	1.35	0.30	
38	-	-	2.63	0.95	1.76	0.63	
3T	-	-	3.40	1.58	2.27	1.05	
3U	-	-	4.94	2.84	3.29	1.89	
4C	2.56	-1.88	1.54	-1.13	1.02	-0.75	

EIA Code

	Capacitance Change from 25°C (%)						
Murata Code	−55°C		−30°C		−10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0.58	-0.24	0.40	-0.17	0.25	-0.11	
6C	0.87	-0.48	0.59	-0.33	0.38	-0.21	
6P	2.33	0.72	1.61	0.50	1.02	0.32	
6R	3.02	1.28	2.08	0.88	1.32	0.56	
6S	4.09	2.16	2.81	1.49	1.79	0.95	
6T	5.46	3.28	3.75	2.26	2.39	1.44	
7U	8.78	5.04	6.04	3.47	3.84	2.21	

ER□ Series

	Capacitance Change from 25°C (%)							
Murata Code	−55°C		-30°C		−10°C			
	Max.	Min.	Max.	Min.	Max.	Min.		
5C	0.43	-0.22	0.28	-0.16	0.17	-0.11		
6C	0.73	-0.44	0.48	-0.32	0.29	-0.20		
7C	1.33	-0.93	0.88	-0.64	0.54	-0.42		
8C	2.61	-0.97	1.73	-1.36	1.07	-0.86		

6Rated Voltage

Code	Rated Voltage
0G	DC4V
0J	DC6.3V
1A	DC10V
1C	DC16V
1E	DC25V
1H	DC50V
2A	DC100V
2D	DC200V
2E	DC250V
YD	DC300V
2H	DC500V
2J	DC630V
3A	DC1kV
3D	DC2kV
3F	DC3.15kV
E2	AC250V
GB	X2; AC250V (Safety Standard Recognized Type GB)
GC	X1/Y2; AC250V (Safety Standard Recognized Type GC)
GD	Y3; AC250V (Safety Standard Recognized Type GD)
GF	Y2, X1/Y2; AC250V (Safety Standard Recognized Type GF)

Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter "**R**". In this case, all figures are significant digits.

Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

8Capacitance Tolerance

Code	Capacitance Tolerance	TC	Series	Capac	itance Step
В	±0.1pF	СΔ	GJM	≦5pF	E24 Series,1pF
С	10.25 5	CΔ-SL	GRM/ERF/ERH/ERA/ERD/GQM	≦5pF	* 1pF
C	±0.25pF	СΔ	GJM	<10pF	E24 Series,1pF
D	10.5%	CΔ-SL	GRM	6.0 to 9.0pF	* 1pF
U	±0.5pF	СΔ	ERF/ERH/ERA/ERD/GQM/GJM	5.1 to 9.1pF	E24 Series
F	±1%	СΔ	GRM03/15/GJM03/15	5.0 to 9.9pF	0.1pF
		СΔ	GJM	≧10pF	E12 Series
G	±2%	СΔ	GQM	≧10pF	E24 Series
		СΔ	GRM03/15/GJM03/15	2.0 to 9.9pF	0.1pF
		C∆-SL	GRM/GA3	≧10pF	E12 Series
J	±5%	СΔ	ERF/ERH/ERA/ERD/GQM/GJM	≧10pF	E24 Series
		СΔ	GRM03/15/GJM03/15	1.0 to 4.9pF	0.1pF
		B, R, X7R, X5R, ZLM	GRM/GA3	E6	Series
K	±10%	D, R, A/R, A3R, ZLIVI	GR4	E1:	2 Series
		СΔ	GRM03/15/GJM03/15	0.2 to 1.9pF	0.1pF
		Z5U	GRM	E3	Series
М	±20%	B, R, X7R	GRM/GMA/LLL/LLC	E6	Series
IVI	12076	X7R	GA2	E3	Series
		СΔ	GRM03/15/GJM03/15	0.1 to 0.9pF	0.1pF
Z	+80%, -20%	F, Y5V	GRM	E3	Series
R		Dep	ends on individual standards.		

^{*} E24 series is also available.

Individual Specification Code


Expressed by three figures.

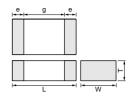
Packaging

Code	Packaging
L	ø178mm Plastic Taping
D	ø178mm Paper Taping
K	ø330mm Plastic Taping
J	ø330mm Paper Taping
E	ø178mm Special Packaging
F	ø330mm Special Packaging
В	Bulk
С	Bulk Case
Т	Bulk Tray

Selection Guide of Chip Monolithic Ceramic Capacitors

★For other automotive equipment such as comfort, security, information, entertainment, GRM series (for general electronics) are available.

Chip Monolithic Ceramic Capacitors



for Flow/Reflow Soldering GRM15/18/21/31 Series

■ Features

- Terminations are made of metal highly resistant to migration.
- The GRM series is a complete line of chip ceramic capacitors in 6.3V, 10V, 16V, 25V, 50V, 100V, 200V and 500V ratings. These capacitors have temperature characteristics ranging from C0G to Y5V.
- A wide selection of sizes is available, from the miniature LxWxT: 1.0x0.5x0.5mm to LxWxT: 3.2x1.6x1.6mm.
 - GRM18, 21 and GRM31 types are suited to flow and reflow soldering.
 - GRM15 type is applied to only reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- The GRM series is available in paper or plastic embossed tape and reel packaging for automatic placement. Bulk case packaging is also available for GRM15, GRM18 and GRM21.

Part Number		Din	nensions (n	nm)		
Part Number GRM155 GRM188* GRM216 GRM219 GRM21A GRM21B GRM316 GRM319 GRM31M	L	W	Т	е	g min.	
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3	
GRM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GRM216			0.6 ±0.1			
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7	
GRM21A	2.0 ±0.1	1.23 ±0.1	1.0 +0/-0.2	0.2 10 0.7	0.7	
GRM21B			1.25 ±0.1			
GRM316			0.6 ±0.1			
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5	
GRM31M			1.15 ±0.1	0.3 10 0.6	1.5	
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			

^{*} Bulk Case : 1.6 ±0.07(L) × 0.8 ±0.07(W) × 0.8 ±0.07(T)

■ Applications

General electronic equipment

Temperature Compensating Type GRM15 Series (1.0x0.5mm) 50/25V

Part Number		GRM15										
L x W [EIA]				1.00x0.5	0 [0402]							
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)		X)	T2H (6T)	U2J (7U)				
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)				
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Dim	ension (T Dimen	sion part numbe	ring code)						
0.50pF(R50)	0.50(5)											
0.75pF(R75)	0.50 (5)											
1.0pF(1R0)	0.50(5)											
2.0pF(2R0)	0.50(5)											
3.0pF(3R0)	0.50(5)	0.50 (5)	0.50 (5)	0.50 (5)			0.50(5)	0.50 (5)				
4.0pF(4R0)	0.50(5)	0.50 (5)	0.50 (5)	0.50 (5)			0.50(5)	0.50 (5)				
5.0pF(5R0)	0.50(5)	0.50 (5)	0.50 (5)	0.50 (5)			0.50(5)	0.50 (5)				
6.0pF(6R0)	0.50(5)	0.50 (5)	0.50 (5)	0.50 (5)			0.50(5)	0.50 (5)				
7.0pF(7R0)	0.50(5)	0.50 (5)	0.50 (5)	0.50 (5)			0.50(5)	0.50 (5)				
8.0pF(8R0)	0.50(5)	0.50 (5)	0.50 (5)	0.50 (5)			0.50(5)	0.50 (5)				
9.0pF(9R0)	0.50 (5)	0.50 (5)	0.50 (5)	0.50 (5)			0.50(5)	0.50 (5)				
10pF(100)	0.50 (5)	0.50 (5)	0.50 (5)	0.50 (5)			0.50(5)	0.50 (5)				
12pF(120)	0.50 (5)	0.50 (5)	0.50 (5)	0.50 (5)			0.50(5)	0.50 (5)				
15pF(150)	0.50 (5)	0.50 (5)	0.50(5)	0.50 (5)			0.50(5)	0.50 (5)				
18pF(180)	0.50(5)	0.50 (5)	0.50(5)	0.50 (5)			0.50(5)	0.50(5)				
22pF(220)	0.50(5)	0.50 (5)	0.50(5)	0.50 (5)			0.50(5)	0.50 (5)				
27pF(270)	0.50(5)	0.50 (5)	0.50(5)	0.50 (5)			0.50(5)	0.50 (5)				
33pF(330)	0.50 (5)		0.50(5)	0.50 (5)			0.50(5)	0.50 (5)				

$- \lambda $	Continued	from	the	preceding	page

Part Number	GRM15											
L x W [EIA]				1.00x0.	50 [0402]							
тс	COG (5C)	P2H (6P)	R2H (6R)	S2H (6S)	(1	X)	T2H (6T)	U2J (7U)				
Rated Volt.	50 (1H)	50 50 50 (1H) (1H) (1C)		50 (1H)	25 (1E)	50 (1H)	50 (1H)					
Capacitance (Ca	pacitance part n	numbering code)	and T (mm) Din	nension (T Dimer	sion part numbe	ering code)						
39pF(390)	0.50 (5)			0.50(5)			0.50(5)	0.50(5)				
47pF(470)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)				
56pF(560)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)				
68pF(680)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)				
82pF(820)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)				
100pF(101)	0.50 (5)				0.50(5)		0.50(5)	0.50(5)				
120pF(121)	0.50 (5)				0.50(5)			0.50(5)				
150pF(151)	0.50 (5)				0.50(5)			0.50(5)				
180pF(181)	0.50 (5)				0.50(5)			0.50(5)				
220pF(221)	0.50 (5)					0.50(5)						
270pF(271)	0.50 (5)					0.50(5)						
330pF(331)	0.50 (5)					0.50(5)						
390pF(391)	0.50 (5)					0.50(5)						
470pF(471)	0.50 (5)											
560pF(561)	0.50(5)											
680pF(681)	0.50(5)											
820pF(821)	0.50(5)											
1000pF(102)	0.50(5)											

The part numbering code is shown in $\ (\).$

Temperature Compensating Type GRM18 Series (1.60x0.80mm) 200/100/50/25V

Part Number		GRM18											
L x W [EIA]						1.60x0.8	30 [0603]						
тс		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)			SL X)		T2H (6T)	U2J (7U)	
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)	
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering o	ode)	'	'		
0.50pF(R50)	0.80(8)	0.80(8)	0.80(8)										
0.75pF(R75)	0.80(8)	0.80(8)	0.80(8)										
1.0pF(1R0)	0.80(8)	0.80(8)	0.80(8)										
2.0pF(2R0)	0.80(8)	0.80(8)	0.80(8)										
3.0pF(3R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)	
4.0pF(4R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)	
5.0pF(5R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)	
6.0pF(6R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)	
7.0pF(7R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)	
8.0pF(8R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)	
9.0pF(9R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)	
10pF(100)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)	
12pF(120)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	
15pF(150)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	
18pF(180)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	
22pF(220)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	
27pF(270)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	
33pF(330)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	
39pF(390)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	
47pF(470)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	
56pF(560)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)	

Dimensions are shown in mm and Rated Voltage in Vdc.

Part Number						GR	M18					
L x W [EIA]						1.60x0.8	30 [0603]					
тс		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)		S (1		T2H (6T)	U2J (7U)	
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part number	ering code)	and T (mm	n) Dimensio	n (T Dimen	sion part n	umbering o	ode)			
68pF(680)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)
82pF(820)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)
100pF(101)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)
120pF(121)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
150pF(151)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
180pF(181)		0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
220pF(221)		0.80(8)	0.80(8)			0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
270pF(271)		0.80(8)	0.80(8)					0.80(8)	0.80(8)		0.80(8)	0.80(8)
330pF(331)		0.80(8)	0.80(8)					0.80(8)	0.80(8)		0.80(8)	0.80(8)
390pF(391)		0.80(8)	0.80(8)					0.80(8)	0.80(8)		0.80(8)	0.80(8)
470pF(471)		0.80(8)	0.80(8)						0.80(8)		0.80(8)	0.80(8)
560pF(561)		0.80(8)	0.80(8)						0.80(8)			0.80(8)
680pF(681)		0.80(8)	0.80(8)						0.80(8)			0.80(8)
820pF(821)		0.80(8)	0.80(8)							0.80(8)		
1000pF(102)		0.80(8)	0.80(8)						0.80(8)	0.80(8)		0.80(8)
1200pF(122)			0.80(8)						0.80(8)	0.80(8)		0.80(8)
1500pF(152)			0.80(8)						0.80(8)	0.80(8)		0.80(8)
1800pF(182)			0.80(8)						0.80(8)			0.80(8)
2200pF(222)			0.80(8)						0.80(8)			0.80(8)
2700pF(272)			0.80(8)						0.80(8)			0.80(8)
3300pF(332)									0.80(8)			0.80(8)
3900pF(392)									0.80(8)			0.80(8)
4700pF(472)									0.80(8)			0.80(8)
5600pF(562)									0.80(8)			0.80(8)
6800pF(682)									0.80(8)			0.80(8)
8200pF(822)									0.80(8)			0.80(8)
10000pF(103)									0.80(8)			0.80(8)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM21 Series (2.00x1.25mm) 200/100/50/25V

Part Number		GRM21											
L x W [EIA]						2.00x1.2	25 [0805]						
TC		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)		S (1		T2H (6T)	U2J (7U)		
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)	
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm	n) Dimensio	n (T Dimen	sion part n	umbering o	ode)	•			
12pF(120)	0.85(9)	0.85(9)											
15pF(150)	0.85(9)	0.85(9)											
18pF(180)	0.85(9)	0.85(9)											
22pF(220)	0.85(9)	0.85(9)											
27pF(270)	0.85(9)	0.85(9)											
33pF(330)	0.85(9)	0.85(9)											
39pF(390)	0.85(9)	0.85(9)											
47pF(470)	0.85(9)	0.85(9)											
56pF(560)	0.85(9)	0.85(9)											
68pF(680)	1.25(B)												
82pF(820)	1.25(B)												
100pF(101)	1.25(B)												

Part Number						GR	M21					
L x W [EIA]						2.00x1.2	25 [0805]					
тс		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)		(1	X)		T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part number	ering code)	and T (mm	n) Dimensio	n (T Dimen	sion part n	umbering o	ode)			
120pF(121)	1.25(B)						0.85(9)					
150pF(151)	1.25(B)						1.25(B)					
180pF(181)	1.25(B)			0.85(9)			1.25(B)					
220pF(221)	1.25(B)			0.85(9)	0.85(9)		1.25(B)					
270pF(271)				0.85(9)	0.85(9)	0.85(9)	1.25(B)					
330pF(331)				0.85(9)	0.85(9)	0.85(9)	1.25(B)					
390pF(391)				1.25(B)	0.85(9)	0.85(9)	1.25(B)					
470pF(471)				1.25(B)	0.85(9)	0.85(9)	1.25(B)	0.85(9)				
560pF(561)				1.25(B)	1.25(B)	1.25(B)		0.85(9)			1.25(B)	
680pF(681)		0.85(9)			1.25(B)	1.25(B)		0.85(9)			1.25(B)	
820pF(821)		0.85(9)				1.25(B)		1.25(B)	0.60(6)		1.25(B)	0.60(6)
1000pF(102)		0.85(9)						1.25(B)	0.60(6)		1.25(B)	0.60(6)
1200pF(122)			0.60(6)					1.25(B)	0.60(6)		1.25(B)	0.60(6)
1500pF(152)		0.85(9)	0.60(6)					1.25(B)	0.85(9)		1.25(B)	0.85(9)
1800pF(182)			0.60(6)					1.25(B)	0.85(9)		1.25(B)	0.85(9)
2200pF(222)			0.60(6)						0.85(9)			0.85(9)
2700pF(272)			0.60(6)						1.25(B)			1.25(B)
3300pF(332)			0.60(6)						1.25(B)			1.25(B)
3900pF(392)			0.60(6)							0.85(9)		
4700pF(472)			0.60(6)							0.85(9)		
5600pF(562)			0.85(9)							1.25(B)		
6800pF(682)			0.85(9)							1.25(B)		
8200pF(822)			0.85(9)									
10000pF(103)			0.85(9)						0.60(6)			0.60(6)
12000pF(123)			0.85(9)						0.60(6)			0.60(6)
15000pF(153)			0.85(9)						0.60(6)			0.60(6)
18000pF(183)			1.25(B)						0.60(6)			0.60(6)
22000pF(223)			1.25(B)						0.85(9)			0.85(9)
27000pF(273)									0.85(9)			0.85(9)
33000pF(333)									1.00(A)			1.00(A)
39000pF(393)									1.25(B)			1.25(B)
47000pF(473)									1.25(B)			1.25(B)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM31 Series (3.20x1.60mm) 500/200/100/50/25V

Part Number	GRM31														
L x W [EIA]							3.20)x1.60 [1	206]						
тс			C0G (5C)			C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		SL (1X)				U2J (7U)
Rated Volt.	500 (2H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitano	e part nu	umbering	code) aı	nd T (mm	n) Dimens	sion (T Di	mension	part nun	nbering o	ode)		'		•
1.0pF(1R0)	1.15(M)														
2.0pF(2R0)	1.15(M)														
3.0pF(3R0)	1.15(M)														
4.0pF(4R0)	1.15(M)														
5.0pF(5R0)	1.15(M)														
6.0pF(6R0)	1.15(M)														
7.0pF(7R0)	1.15(M)														

Continued from	the prece	ding page.													
Part Number								GRM31							
L x W [EIA]							3.20)x1.60 [1	206]						
тс			C0G (5C)			C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		S (1	X)		T2H (6T)	U2J (7U)
Rated Volt.	500 (2H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	apacitano	ce part nu	umbering	code) aı	nd T (mm) Dimens	sion (T Di	mension	part nun	nbering o	ode)	,	,		
8.0pF(8R0)	1.15(M)														
9.0pF(9R0)	1.15(M)														
10pF(100)	1.15(M)														
12pF(120)	1.15(M)														
15pF(150)	1.15(M)														
18pF(180)	1.15(M)														
22pF(220)	1.15(M)														
27pF(270)	1.15(M)														
33pF(330)	1.15(M)														
39pF(390)	1.15(M)														
47pF(470)	1.15(M)														
56pF(560)	1.15(M)														
68pF(680)	1.15(M)														
82pF(820)	1.15(M)														
270pF(271)		1.15(M)													
330pF(331)		1.15(M)													
390pF(391)		1.15(M)													
470pF(471)		1.15(M)									0.85(9)				
560pF(561)										1.15(M)	0.85(9)				
680pF(681)							0.85(9)			1.15(M)	0.85(9)				
820pF(821)							0.85(9)	0.85(9)		1.15(M)	0.85(9)				
1000pF(102)							1.15(M)	1.15(M)	0.85(9)	1.15(M)	0.85(9)				
1200pF(122)			1.15(M)				1.15(M)	1.15(M)		1.15(M)	0.85(9)				
1500pF(152)			1.15(M)				1.15(M)	1.15(M)		1.10(11)	0.85(9)				
1800pF(182)			1.15(M)				1.10(11)	1.10(11)	1.15(M)		0.85(9)				
2200pF(222)			1.15(M)						1.10(11)		1.15(M)			1.15(M)	
2700pF(272)											1.15(M)			1.15(M)	
3300pF(332)				0.85(9)							1.15(M)			1.15(M)	
3900pF(392)				0.85(9)							1.15(M)	0.85(9)		1.15(M)	0.85(9)
4700pF(472)				0.85(9)							1.15(M)	0.85(9)		1.13(11)	0.85(9)
5600pF(562)			0.85(9)	0.85(9)							1.13(11)	0.85(9)			0.85(9)
6800pF(682)			0.00(3)	0.85(9)	0.85(9)	0.85(9)						1.15(M)			1.15(M)
8200pF(822)				0.85(9)		1.15(M)						1.15(M)			1.15(M)
10000pF(103)				0.85(9)	0.85(9)	1.10(111)						1.10(11)	1.15(M)		1.10(11)
12000pF(123)				0.85(9)	0.00(0)								1.15(M)		
15000pF(153)				0.85(9)									1.15(M)		
18000pF(183)				0.85(9)											
22000pF(223)				0.85(9)											
27000pF(273)				0.85(9)											
33000pF(333)				0.85(9)											
39000pF(393)				1.15(M)											
47000pF(393)				1.15(M)											
56000pF(563)				1.60(C)								0.85(9)			0.85(9)
68000pF(683)				1.60(C)								1.15(M)			1.15(M)
82000pF(823)				1.60(C)								1.15(M)			1.15(M)
0.10μF(104)				1.00(C)	1.60(C)							1.15(M)			
υ. τυμε (104)					1.00(6)							1.13(111)			1.15(M)

The part numbering code is shown in ().

High Dielectric Constant Type X5R (R6) Characteristics

тс		X5R (R6)										
Part Number	GRI	M15		GRM18		GR	M21		GRM31			
L x W [EIA]	1.00x0.5	50 [0402]	1.	.60x0.80 [060)3]	2.00x1.2	25 [0805]	3.20x1.60 [1206]				
Rated Volt.	16 (1C)	10 (1A)	25 (1E)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	16 (1C)	10 (1A)	6.3 (0J)		
Capacitance (Ca	pacitance pa	rt numbering	code) and T	(mm) Dimens	sion (T Dimen	sion part nun	nbering code))				
68000pF(683)		0.50(5)										
0.10μF(104)	0.50(5)	0.50(5)										
0.22μF(224)			0.80(8)									
0.33μF(334)				0.80(8)		0.60(6)						
0.47μF(474)				0.80(8)								
0.68μF(684)				0.80(8)								
1μF(105)				0.80(8)	0.80(8)	0.85(9)			0.85(9)			
1.5μF(155)							0.85(9)					
2.2μF(225)						1.25(B)	1.25(B)		0.85(9)			
3.3μF(335)							1.25(B)		1.30(X)			
4.7μF(475)							1.25(B)	1.60(C)	1.60(C)	1.15(M)		
10μF(106)									1.60(C)	1.60(C)		

The part numbering code is shown in each ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type X7R (R7) Characteristics

тс		X7R (R7)																		
Part Number		GRI	M15			(GRM1	8				GR	M21				(GRM3	1	
L x W [EIA]	1.	00x0.5	50 [040)2]		1.60x	(0.80 [0603]			2.	00x1.2	25 [080	05]		3.20x1.60 [1206]				
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacita	nce pa	rt num	bering	code)	and T	(mm) I	Dimens	sion (T	Dimen	sion p	art nun	nberin	g code)					
220pF (221)	0.50 (5)				0.80 (8)	0.80 (8)														
330pF (331)	0.50 (5)				0.80 (8)	0.80 (8)														
470pF (471)	0.50 (5)				0.80 (8)	0.80 (8)														
680pF (681)	0.50 (5)				0.80 (8)	0.80 (8)														
1000pF (102)	0.50 (5)				0.80 (8)	0.80 (8)														
1500pF (152)	0.50 (5)				0.80 (8)	0.80 (8)														
2200pF (222)	0.50 (5)				0.80 (8)	0.80 (8)														
3300pF (332)	0.50 (5)				0.80 (8)	0.80 (8)														
4700pF (472)	0.50 (5)					0.80 (8)				0.85 (9)										
6800pF (682)		0.50 (5)				0.80 (8)				0.85 (9)										
10000pF (103)		0.50 (5)				0.80 (8)				1.25 (B)										

 $^{3.3\}mu F$ and $4.7\mu F$, 6.3V rated are GRM21 series of L: 2 ± 0.15 , W: 1.25 ± 0.15 , T: 1.25 ± 0.15 .

T: 1.15 ± 0.1 mm is also available for GRM31 $1.0\mu F$ for 16V.

L: 3.2 ± 0.2 , W: 1.6 ± 0.2 for GRM31 16V $1.0 \mu F$ type. Also L: 3.2 ± 0.2 , W: 1.6 ± 0.2 , T: 1.15 ± 0.15 for GRM31 16V $1.5 \mu F$ and $2.2 \mu F$ type.

тс											7R 2 7)									
Part Number		GR	M15				GRM18	3				GR	M21					GRM3		
L x W [EIA]	1.	00x0.5	50 [040)2]		1.60	k0.80 [0603]			2.	00x1.2	25 [080)5]			3.20	(1.60 [1206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	apacita	nce pa	art num	bering	code)	and T	(mm) [Dimens	sion (T	Dimen	sion pa	art nun	nberin	g code))					
15000pF (153)		0.50 (5)	0.50 (5)			0.80 (8)				1.25 (B)										
22000pF (223)		0.50 (5)	0.50 (5)			0.80 (8)				1.25 (B)										
33000pF (333)		0.50 (5)	0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)			1.25 (B)	0.85 (9)					1.15 (M)				
47000pF (473)		0.50 (5)		0.50 (5)		0.80 (8)	0.80 (8)			1.25 (B)	1.25 (B)					1.15 (M)				
68000pF (683)			0.50 (5)			0.80 (8)	0.80 (8)				1.25 (B)					1.15 (M)				
0.10μF (104)			0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)	0.80 (8)			1.25 (B)	1.25 (B)								
0.15μF (154)							0.80 (8)	0.80 (8)	0.80 (8)		1.25 (B)	1.25 (B)								
0.22μF (224)							0.80 (8)	0.80 (8)	0.80 (8)		1.25 (B)	0.85 (9)								
0.33μF (334)											0.85 (9)	1.25 (B)		0.60 (6)			0.85 (9)			
0.47μF (474)											1.25 (B)	1.25 (B)	0.85 (9)				1.15 (M)		0.85 (9)	
0.68µF (684)													0.85 (9)					0.85 (9)		
1.0µF (105)												1.25 (B)	1.25 (B)				1.15 (M)	1.15 (M)	0.85 (9)	0.85 (9)
1.5µF (155)												1.25 (B)					1.60 (C)		1.15 (M)	
2.2µF (225)														1.25 (B)	1.25 (B)		1.60 (C)	1.15 (M)	1.15 (M)	1.15 (M)
3.3µF (335)																		1.60 (C)	1.60 (C)	
4.7μF (475)																		1.60 (C)	1.60 (C)	1.60 (C)
10μF (106)																				1.60 (C)

The part numbering code is shown in each ().

The tolerance will be changed to L: 3.2 ± 0.2 , W: 1.6 ± 0.2 for GRM31 16V $1.0\mu F$ type. Also L: 3.2 ± 0.2 , W: 1.6 ± 0.2 , T: 1.15 ± 0.15 for GRM31 16V $1.5\mu F$ and $2.2\mu F$ type. Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type Y5V (F5) Characteristics

тс									Y5V (F5)								
Part Number		GRM15	•			GRM18	}			GR	M21				GRM31		
L x W [EIA]	1.00	x0.50 [0	0402]		1.60	x0.80 [0	0603]		2	2.00x1.2	25 [0805	5]		3.20	x1.60 [1	[206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Ca	apacitan	ce part	number	ring cod	le) and 1	(mm) [Dimensio	on (T Di	mensior	n part nu	ımberin	g code)					
2200pF (222)	0.50 (5)																
4700pF (472)	0.50 (5)			0.80 (8)													
10000pF (103)	0.50 (5)				0.80 (8)												
22000pF (223)		0.50 (5)			0.80 (8)												
47000pF (473)		0.50 (5)	0.50 (5)		0.80 (8)												
0.10μF (104)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)			0.85 (9)								
0.22μF (224)					0.80 (8)		0.80 (8)		1.25 (B)	0.85 (9)							
0.47μF (474)						0.80 (8)	0.80 (8)	0.80 (8)	0.85 (9)	1.25 (B)			1.15 (M)				
1.0μF (105)							0.80 (8)	0.80 (8)	0.85 (9)	0.85 (9)	0.85 (9)	0.85 (9)		1.15 (M)	0.85 (9)		
2.2µF (225)										1.25 (B)	1.25 (B)	1.25 (B)			1.15 (M)	0.85 (9)	
4.7μF (475)												1.25 (B)	1.60 (C)	1.15 (M)	1.15 (M)	1.15 (M)	
10μF (106)														1.60 (C)		1.15 (M)	1.15 (M)

The part numbering code is shown in each ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type Z5U (E4) Characteristics

тс		Z5U (E4)	
Part Number	GRM18	GRM21	GRM31
L x W [EIA]	1.60x0.80 [0603]	2.00x1.25 [0805]	3.20x1.60 [1206]
Rated Volt.	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part numbering code) and T (mm	n) Dimension (T Dimension part numbering o	code)
10000pF(103)	0.80(8)		
22000pF(223)	0.80(8)		
47000pF(473)		0.60(6)	
0.10μF(104)		0.85(9)	
0.22μF(224)			0.85(9)

The part numbering code is shown in ().

T: 1.25 \pm 0.1mm is also available for GRM21 25V or 16V 1.0 μ F type.

Chip Monolithic Ceramic Capacitors

for Reflow Soldering GRM32/43/55 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- The GRM series is a complete line of chip ceramic capacitors in 10V, 16V, 25V, 50V, 100V and 200V ratings. These capacitors have temperature characteristics ranging from C0G to Y5V.
- This series consists of type LxWxT: 3.2x2.5x0.85mm to LxWxT: 5.7x5.0x2.5mm. These are suited to only reflow soldering.
- Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- The GRM series is available in paper or plastic embossed tape and reel packaging for automatic placement.

		Dimo	nsions (mn	2)		
Part Number	L	W	T		g min.	
GRM329			0.85 ±0.1			_
GRM32M			1.15 ±0.1			-
GRM32N	3.2 ± 0.3	2.5 ±0.2	1.35 ±0.15	0.3	1.0	- 1
GRM32R			1.8 ±0.2			00000000
GRM32E			2.5 ±0.2			
GRM43M			1.15 ±0.1			
GRM43N			1.35 ±0.15			
GRM43R	4.5 ± 0.4	3.2 ±0.3	1.8 ±0.2	0.3	2.0	
GRM43D			2.0 ±0.2			e g e
GRM43E			2.5 ±0.2			
GRM55M			1.15 ±0.1			
GRM55N			1.35 ±0.15			
GRM55C	5.7 ±0.4	5.0 +0.4	1.6 ±0.2	0.3	2.0	
GRM55R	J. / ±0.4	J.U ±0.4	1.8 ±0.2	0.3	2.0	
GRM55D			2.0 ±0.2			L W
GRM55E			2.5 ±0.2			L VV

■ Applications

General electronic equipment

Temperature Compensating Type GRM32/43/55 Series

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32N5C2D561JV01	C0G (EIA)	200	560 ±5%	3.20	2.50	1.35
GRM32N5C2D681JY21	COG (EIA)	200	680 ±5%	3.20	2.50	1.35
GRM32N5C2D821JY21	COG (EIA)	200	820 ±5%	3.20	2.50	1.35
GRM32N5C2D102JY21	COG (EIA)	200	1000 ±5%	3.20	2.50	1.35
GRM43R5C2D122JV01	COG (EIA)	200	1200 ±5%	4.50	3.20	1.80
GRM43R5C2D152JV01	COG (EIA)	200	1500 ±5%	4.50	3.20	1.80
GRM43R5C2D182JY21	COG (EIA)	200	1800 ±5%	4.50	3.20	1.80
GRM43R5C2D222JY21	COG (EIA)	200	2200 ±5%	4.50	3.20	1.80
GRM43R5C2D272JY21	COG (EIA)	200	2700 ±5%	4.50	3.20	1.80
GRM55N5C2D332JY21	COG (EIA)	200	3300 ±5%	5.70	5.00	1.35
GRM55R5C2D392JY21	COG (EIA)	200	3900 ±5%	5.70	5.00	1.80
GRM55R5C2D472JY21	C0G (EIA)	200	4700 ±5%	5.70	5.00	1.80
GRM55R5C2D562JY21	COG (EIA)	200	5600 ±5%	5.70	5.00	1.80
GRM32N1X2D152JV01	SL (JIS)	200	1500 ±5%	3.20	2.50	1.35
GRM43N1X2D182JV01	SL (JIS)	200	1800 ±5%	4.50	3.20	1.35
GRM43N1X2D222JV01	SL (JIS)	200	2200 ±5%	4.50	3.20	1.35
GRM43R1X2D272JV01	SL (JIS)	200	2700 ±5%	4.50	3.20	1.80
GRM43R1X2D332JV01	SL (JIS)	200	3300 ±5%	4.50	3.20	1.80
GRM43R1X2D392JV01	SL (JIS)	200	3900 ±5%	4.50	3.20	1.80
GRM55N1X2D472JV01	SL (JIS)	200	4700 ±5%	5.70	5.00	1.35
GRM55R1X2D562JV01	SL (JIS)	200	5600 ±5%	5.70	5.00	1.80
GRM55R1X2D682JV01	SL (JIS)	200	6800 ±5%	5.70	5.00	1.80
GRM55R1X2D822JV01	SL (JIS)	200	8200 ±5%	5.70	5.00	1.80
GRM32N1X2A562JZ01	SL (JIS)	100	5600 ±5%	3.20	2.50	1.35
GRM32N1X2A682JZ01	SL (JIS)	100	6800 ±5%	3.20	2.50	1.35
GRM43N1X2A822JZ01	SL (JIS)	100	8200 ±5%	4.50	3.20	1.35
GRM43R1X2A103JZ01	SL (JIS)	100	10000 ±5%	4.50	3.20	1.80
GRM43R1X2A123JZ01	SL (JIS)	100	12000 ±5%	4.50	3.20	1.80

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM43R1X2A153JZ01	SL (JIS)	100	15000 ±5%	4.50	3.20	1.80
GRM55M1X2A183JZ01	SL (JIS)	100	18000 ±5%	5.70	5.00	1.15
GRM55N1X2A223JZ01	SL (JIS)	100	22000 ±5%	5.70	5.00	1.35
GRM55R1X2A273JZ01	SL (JIS)	100	27000 ±5%	5.70	5.00	1.80
GRM55R1X2A333JZ01	SL (JIS)	100	33000 ±5%	5.70	5.00	1.80
GRM55R1X2A393JZ01	SL (JIS)	100	39000 ±5%	5.70	5.00	1.80
GRM32N1X1H103JZ01	SL (JIS)	50	10000 ±5%	3.20	2.50	1.35
GRM32N1X1H123JZ01	SL (JIS)	50	12000 ±5%	3.20	2.50	1.35
GRM43R1X1H153JZ01	SL (JIS)	50	15000 ±5%	4.50	3.20	1.80
GRM55M1X1H183JZ01	SL (JIS)	50	18000 ±5%	5.70	5.00	1.15
GRM55N1X1H223JZ01	SL (JIS)	50	22000 ±5%	5.70	5.00	1.35
GRM55R1X1H273JZ01	SL (JIS)	50	27000 ±5%	5.70	5.00	1.80
GRM55R1X1H333JZ01	SL (JIS)	50	33000 ±5%	5.70	5.00	1.80
GRM55R1X1H393JZ01	SL (JIS)	50	39000 ±5%	5.70	5.00	1.80

High Dielectric Constant Type Type GRM32 Series (3.20x2.50mm)

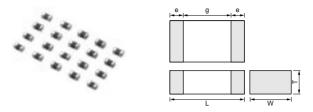
Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32ER61A106KC01	X5R (EIA)	10	10μF ±10%	3.20	2.50	2.50
GRM32NR72A683KA01	X7R (EIA)	100	68000pF ±10%	3.20	2.50	1.35
GRM32NR72A104KA01	X7R (EIA)	100	0.10μF ±10%	3.20	2.50	1.35
GRM32ER72A105KA01	X7R (EIA)	100	1.0μF ±10%	3.20	2.50	2.50
GRM32MR71H474KA01	X7R (EIA)	50	0.47μF ±10%	3.20	2.50	1.15
GRM32NR71H684KA01	X7R (EIA)	50	0.68μF ±10%	3.20	2.50	1.35
GRM32DR71H335KA88	X7R (EIA)	50	3.3μF ±10%	3.20	2.50	2.00
GRM32ER71H475KA88	X7R (EIA)	50	4.7μF ±10%	3.20	2.50	2.50
GRM32RR71E225KC01	X7R (EIA)	25	2.2μF ±10%	3.20	2.50	1.80
GRM32MR71C225KC01	X7R (EIA)	16	2.2μF ±10%	3.20	2.50	1.15
GRM32NR71C335KC01	X7R (EIA)	16	3.3μF ±10%	3.20	2.50	1.35
GRM32RR71C475KC01	X7R (EIA)	16	4.7μF ±10%	3.20	2.50	1.80
GRM32DR71C106KA01	X7R (EIA)	16	10μF ±10%	3.20	2.50	2.00
GRM32NF52A104ZA01	Y5V (EIA)	100	0.10μF +80/-20%	3.20	2.50	1.35
GRM32RF51H105ZA01	Y5V (EIA)	50	1.0μF +80/-20%	3.20	2.50	1.8
GRM32DF51H106ZA01	Y5V (EIA)	50	10μF +80/-20%	3.20	2.50	2.00
GRM329F51E475ZA01	Y5V (EIA)	25	4.7μF +80/-20%	3.20	2.50	0.85
GRM32NF51E106ZA01	Y5V (EIA)	25	10μF +80/-20%	3.20	2.50	1.35
GRM32NF51C106ZA01	Y5V (EIA)	16	10μF +80/-20%	3.20	2.50	1.35

High Dielectric Constant Type Type GRM43 Series (4.50x3.20mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM43RR72A154KA01	X7R (EIA)	100	0.15 ±10%	4.50	3.20	1.80
GRM43RR72A224KA01	X7R (EIA)	100	0.22 ±10%	4.50	3.20	1.80
GRM43DR72A474KA01	X7R (EIA)	100	0.47 ±10%	4.50	3.20	2.00
GRM43ER72A225KA01	X7R (EIA)	100	2.2 ±10%	4.50	3.20	2.50
GRM43ER71H225KA01	X7R (EIA)	50	2.2 ±10%	4.50	3.20	2.50
GRM43ER71E475KA01	X7R (EIA)	25	4.7 ±10%	4.50	3.20	2.50

High Dielectric Constant Type Type GRM55 Series (5.70x5.00mm)

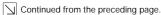
Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM55DR61H106KA88	X5R (EIA)	50	10.0 ±10%	5.70	5.00	2.00
GRM55DR72A105KA01	X7R (EIA)	100	1.0 ±10%	5.70	5.00	2.00
GRM55ER72A475KA01	X7R (EIA)	100	4.7 ±10%	5.70	5.00	2.50
GRM55RR71H105KA01	X7R (EIA)	50	1.0 ±10%	5.70	5.00	1.80
GRM55RR71H155KA01	X7R (EIA)	50	1.5 ±10%	5.70	5.00	1.80
GRM55ER11H475KA01	X7R (EIA)	50	4.7 ±10%	5.70	5.00	2.50
GRM55ER71H475KA01	X7R (EIA)	50	4.7 ±10%	5.70	5.00	2.50
GRM55RF52A474ZA01	Y5V (EIA)	100	0.47 +80/-20%	5.70	5.00	1.80


Chip Monolithic Ceramic Capacitors

Ultra-small GRM03 Series

■ Features

- 1. Small chip size (LxWxT: 0.6x0.3x0.3mm)
- 2. Terminations are made of metal highly resistant to migration.
- 3. GRM03 type is suited to only reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 5. GRM03 series are suited to miniature micro wave module, portable equipment and high frequency circuits.



Part Number		Dimensions (mm)								
Part Number	L	W	T	е	g min.					
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2					

■ Applications

- 1. Miniature micro wave module
- 2. Portable equipment
- 3. High frequency circuit

Part Number					GR	M03					
L x W [EIA]	0.6x0.3 [0201]										
тс	C0G (5C)	R2H (6R)	S2H (6S)	T2H (6T)		2J U)	X5R (R6)	X7 (R	7R 7)	Y5V (F5)	
Rated Volt.	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1H)	25 (1E)	10 (1A)	16 (1C)	6.3 (0J)	10 (1A)	
Capacitance (Cap	pacitance pa	rt numbering	code) and T	(mm) Dimens	sion (T Dimen	sion part num	bering code)			
0.50pF(R50)	0.3(3)										
0.75pF(R75)	0.3(3)										
1.0pF(1R0)	0.3(3)										
2.0pF(2R0)	0.3(3)										
3.0pF(3R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)						
4.0pF(4R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)						
5.0pF(5R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)						
6.0pF(6R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)						
7.0pF(7R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)						
8.0pF(8R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)						
9.0pF(9R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)						
10pF(100)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)						
12pF(120)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)						
15pF(150)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)						
18pF(180)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)					
22pF(220)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)					
27pF(270)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)					
33pF(330)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)					
39pF(390)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)					
47pF(470)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)					
56pF(560)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)					
68pF(680)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)					
82pF(820)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)					
100pF(101)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)		0.3(3)			
150pF(151)								0.3(3)			
220pF(221)								0.3(3)			
330pF(331)								0.3(3)			
470pF(471)								0.3(3)			

Z continued from	the preceding p									
Part Number					GR	M03				
L x W [EIA]					0.6x0.3	3 [0201]				
тс	C0G (5C)	R2H (6R)	S2H (6S)	T2H U2J X5R (6T) (7U) (R6)			X7R (R7)			
Rated Volt.	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1H)	25 (1E)	10 (1A)	16 (1C)	6.3 (0J)	10 (1A)
Capacitance (Ca	pacitance pa	rt numbering	code) and T	(mm) Dimens	sion (T Dimen	sion part nun	nbering code))	'	
680pF(681)								0.3(3)		
1000pF(102)								0.3(3)		
1500pF(152)							0.3(3)		0.3(3)	
2200pF(222)							0.3(3)		0.3(3)	0.3(3)
3300pF(332)							0.3(3)		0.3(3)	
4700pF(472)							0.3(3)		0.3(3)	0.3(3)
6800pF(682)							0.3(3)		0.3(3)	
10000pF(103)							0.3(3)		0.3(3)	0.3(3)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Chip Monolithic Ceramic Capacitors

Tight Tolerance GRM03/15 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. A wide selection of sizes is available, from the miniature LxWxT: 0.6x0.3x0.3mm or LxWxT: 1.0x0.5x0.5mm.
- 3. The GRM03 type is a complete line of chip ceramic capacitors in 25V ratings, The GRM15 type is a complete line of chip ceramic capacitors in 50V ratings.
- 4. These capacitors have temperature characteristics ranging C0G.
- 5. GRM03 and GRM15 type are applied to only reflow soldering.
- 6. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 7. The GRM series is available in paper tape and reel packaging for automatic placement.

Part Number		Dim	ensions (m	m)	
Part Number	L	W	T	е	g min.
GRM033	0.6±0.03	0.3±0.03	0.3±0.03	0.1 to 0.2	0.2
GRM155	1.0±0.05	0.5±0.05	0.5±0.05	0.15 to 0.3	0.4

■ Applications

General electronic equipment

Temperature Compensating Type GRM03/15 Series

Part Number		GRM03	GRM15
L x W [EIA]		0.6x0.3 [0201]	1.00x0.50 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitano	ce Tolerance and T Dimension	
0.10pF(R10) M, N		0.3(3)	0.50 (5)
0.20pF(R20)	K, M	0.3(3)	0.50 (5)
0.30pF(R30)	K, M	0.3(3)	0.50 (5)
0.40pF(R40)	K, M	0.3(3)	0.50 (5)
0.50pF(R50)	K, M	0.3(3)	0.50 (5)
0.60pF(R60)	K, M	0.3(3)	0.50 (5)
0.70pF(R70)	K, M	0.3(3)	0.50 (5)
0.80pF(R80)	K, M	0.3(3)	0.50 (5)
0.90pF(R90)	K, M	0.3(3)	0.50 (5)
1.0pF(1R0)	J, K	0.3(3)	0.50 (5)
1.1pF(1R1)	J, K	0.3(3)	0.50 (5)
1.2pF(1R2)	J, K	0.3(3)	0.50 (5)
1.3pF(1R3)	J, K	0.3(3)	0.50 (5)
1.4pF(1R4)	J, K	0.3(3)	0.50 (5)
1.5pF(1R5)	J, K	0.3(3)	0.50(5)
1.6pF(1R6)	J, K	0.3(3)	0.50 (5)
1.7pF(1R7)	J, K	0.3(3)	0.50(5)
1.8pF(1R8)	J, K	0.3(3)	0.50(5)
1.9pF(1R9)	J, K	0.3(3)	0.50 (5)

The part numbering code is shown in ().

Part Number		GRM03	GRM15
L x W [EIA]		0.6x0.3 [0201]	1.00x0.50 [0402]
		COG	COG
TC		(5C)	(5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitano	e Tolerance and T Dimension	
2.0pF(2R0)	G, J	0.3(3)	0.50 (5)
2.1pF(2R1)	G, J	0.3 (3)	0.50(5)
2.2pF(2R2)	G, J	0.3(3)	0.50(5)
2.3pF(2R3)	G, J	0.3(3)	0.50(5)
2.4pF(2R4)	G, J	0.3(3)	0.50(5)
2.5pF(2R5)	G, J	0.3(3)	0.50(5)
2.6pF(2R6)	G, J	0.3 (3)	0.50(5)
2.7pF(2R7)	G, J	0.3(3)	0.50(5)
2.8pF(2R8)	G, J	0.3(3)	0.50(5)
2.9pF(2R9)	G, J	0.3(3)	0.50 (5)
3.0pF(3R0)	G, J	0.3(3)	0.50 (5)
3.1pF(3R1)	G, J	0.3(3)	0.50(5)
3.2pF(3R2)	G, J	0.3(3)	0.50(5)
3.3pF(3R3)	G, J	0.3(3)	0.50 (5)
3.4pF(3R4)	G, J	0.3 (3)	0.50(5)
3.5pF(3R5)	G, J	0.3 (3)	0.50(5)
3.6pF(3R6)	G, J	0.3 (3)	0.50(5)
3.7pF(3R7)	G, J	0.3(3)	0.50(5)
3.8pF(3R8)	G, J	0.3 (3)	0.50(5)
3.9pF(3R9)	G, J	0.3(3)	0.50 (5)
4.0pF(4R0)	G, J	0.3(3)	0.50 (5)
4.1pF(4R1)	G, J	0.3(3)	0.50(5)
4.2pF(4R2)	G, J	0.3 (3)	0.50 (5)
4.3pF(4R3)	G, J	0.3 (3)	0.50(5)
4.4pF(4R4)	G, J	0.3 (3)	0.50(5)
4.5pF(4R5)	G, J	0.3 (3)	0.50(5)
4.6pF(4R6)	G, J	0.3(3)	0.50(5)
4.7pF(4R7)	G, J	0.3 (3)	0.50(5)
4.8pF(4R8)	G, J	0.3(3)	0.50(5)
4.9pF(4R9)	G, J	0.3 (3)	0.50(5)
5.0pF(5R0)	F, G	0.3 (3)	0.50(5)
5.1pF(5R1)	F, G	0.3 (3)	0.50(5)
5.2pF(5R2)	F, G	0.3(3)	0.50(5)
5.3pF(5R3)	F, G	0.3(3)	0.50 (5)
5.4pF(5R4)	F, G	0.3(3)	0.50(5)
5.5pF(5R5)	F, G	0.3(3)	0.50 (5)
5.6pF(5R6)	F, G	0.3(3)	0.50 (5)
5.7pF(5R7)	F, G	0.3(3)	0.50 (5)
5.8pF(5R8)	F, G	0.3(3)	0.50 (5)
5.9pF(5R9)	F, G	0.3(3)	0.50 (5)
6.0pF(6R0)	F, G	0.3(3)	0.50 (5)
6.1pF(6R1)	F, G	0.3(3)	0.50 (5)
6.2pF(6R2)	F, G	0.3(3)	0.50 (5)
6.3pF(6R3)	F, G	0.3(3)	0.50 (5)
6.4pF(6R4)	F, G	0.3(3)	0.50 (5)
6.5pF(6R5)	F, G	0.3(3)	0.50 (5)
6.6pF(6R6)	F, G	0.3(3)	0.50 (5)
6.7pF(6R7)	F, G	0.3(3)	0.50 (5)
6.8pF(6R8)	F, G	0.3 (3)	0.50 (5)
6.9pF(6R9)	F, G	0.3(3)	0.50 (5)

The part numbering code is shown in $\ (\).$

Part Number		GRM03	GRM15
. x W [EIA]		0.6x0.3 [0201]	1.00x0.50 [0402]
rc ·		COG (5C)	C0G (5C)
ated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitanc	e Tolerance and T Dimension	
7.0pF(7R0)	F, G	0.3 (3)	0.50 (5)
7.1pF(7R1)	F, G	0.3(3)	0.50(5)
7.2pF(7R2)	F, G	0.3 (3)	0.50 (5)
7.3pF(7R3)	F, G	0.3 (3)	0.50(5)
7.4pF(7R4)	F, G	0.3 (3)	0.50(5)
7.5pF(7R5)	F, G	0.3(3)	0.50(5)
7.6pF(7R6)	F, G	0.3(3)	0.50(5)
7.7pF(7R7)	F, G	0.3 (3)	0.50(5)
7.8pF(7R8)	F, G	0.3 (3)	0.50(5)
7.9pF(7R9)	F, G	0.3 (3)	0.50(5)
8.0pF(8R0)	F, G	0.3 (3)	0.50(5)
8.1pF(8R1)	F, G	0.3 (3)	0.50(5)
8.2pF(8R2)	F, G	0.3 (3)	0.50(5)
8.3pF(8R3)	F, G	0.3 (3)	0.50(5)
8.4pF(8R4)	F, G	0.3 (3)	0.50(5)
8.5pF(8R5)	F, G	0.3(3)	0.50(5)
8.6pF(8R6)	F, G	0.3(3)	0.50(5)
8.7pF(8R7)	F, G	0.3 (3)	0.50(5)
8.8pF(8R8)	F, G	0.3(3)	0.50(5)
8.9pF(8R9)	F, G	0.3(3)	0.50(5)
9.0pF(9R0)	F, G	0.3(3)	0.50(5)
9.1pF(9R1)	F, G	0.3(3)	0.50(5)
9.2pF(9R2)	F, G	0.3(3)	0.50(5)
9.3pF(9R3)	F, G	0.3(3)	0.50(5)
9.4pF(9R4)	F, G	0.3(3)	0.50(5)
9.5pF(9R5)	F, G	0.3(3)	0.50(5)
9.6pF(9R6)	F, G	0.3(3)	0.50(5)
9.7pF(9R7)	F, G	0.3 (3)	0.50(5)
9.8pF(9R8)	F, G	0.3 (3)	0.50(5)
9.9pF(9R9)	F, G	0.3(3)	0.50(5)

The part numbering code is shown in $\ (\).$

Chip Monolithic Ceramic Capacitors

Thin Type (Flow/Reflow)

■ Features

- This series is suited to flow and reflow soldering. Capacitor terminations are made of metal highly resistant to migration.
- 2. Large capacitance values enable excellent bypass effects to be realized.
- 3. Its thin package makes this series ideally suited for the production of small electronic products and for mounting underneath ICs.

■ Applications

Thin equipment such as IC cards

Part Number	Dimensions (mm)						
Part Number	L W T e gm						
GRM15X	1.0 ±0.05	0.5 ±0.05	0.25 ±0.05	0.1 to 0.3	0.4		

Temperature Compensating Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM15X5C1H1R0CDB4	COG (EIA)	50	1.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H2R0CDB4	COG (EIA)	50	2.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H3R0CDB4	COG (EIA)	50	3.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H4R0CDB4	COG (EIA)	50	4.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H5R0CDB4	COG (EIA)	50	5.0 ±0.25pF	1.00	0.50	0.25	0402
GRM15X5C1H6R0DDB4	COG (EIA)	50	6.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H7R0DDB4	COG (EIA)	50	7.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H8R0DDB4	COG (EIA)	50	8.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H9R0DDB4	COG (EIA)	50	9.0 ±0.5pF	1.00	0.50	0.25	0402
GRM15X5C1H100JDB4	COG (EIA)	50	10 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H120JDB4	COG (EIA)	50	12 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H150JDB4	COG (EIA)	50	15 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H180JDB4	COG (EIA)	50	18 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H220JDB4	COG (EIA)	50	22 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H270JDB4	COG (EIA)	50	27 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H330JDB4	COG (EIA)	50	33 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H390JDB4	COG (EIA)	50	39 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H470JDB4	COG (EIA)	50	47 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H560JDB4	COG (EIA)	50	56 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H680JDB4	COG (EIA)	50	68 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H820JDB4	COG (EIA)	50	82 ±5%	1.00	0.50	0.25	0402
GRM15X5C1H101JDB4	COG (EIA)	50	100 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E121JDB4	COG (EIA)	25	120 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E151JDB4	COG (EIA)	25	150 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E181JDB4	COG (EIA)	25	180 ±5%	1.00	0.50	0.25	0402
GRM15X5C1E221JDB4	COG (EIA)	25	220 ±5%	1.00	0.50	0.25	0402

High Dielectric Constant Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM15XR71H221KA86	X7R (EIA)	50	220 ±10%	1.00	0.50	0.25	0402
GRM15XR71H331KA86	X7R (EIA)	50	330 ±10%	1.00	0.50	0.25	0402
GRM15XR71H471KA86	X7R (EIA)	50	470 ±10%	1.00	0.50	0.25	0402

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM15XR71H681KA86	X7R (EIA)	50	680 ±10%	1.00	0.50	0.25	0402
GRM15XR71H102KA86	X7R (EIA)	50	1000 ±10%	1.00	0.50	0.25	0402
GRM15XR71H152KA86	X7R (EIA)	50	1500 ±10%	1.00	0.50	0.25	0402
GRM15XR71E182KA86	X7R (EIA)	25	1800 ±10%	1.00	0.50	0.25	0402
GRM15XR71E222KA86	X7R (EIA)	25	2200 ±10%	1.00	0.50	0.25	0402
GRM15XR71C332KA86	X7R (EIA)	16	3300 ±10%	1.00	0.50	0.25	0402
GRM15XR71C472KA86	X7R (EIA)	16	4700 ±10%	1.00	0.50	0.25	0402
GRM15XR71C682KA86	X7R (EIA)	16	6800 ±10%	1.00	0.50	0.25	0402

		Specifi	cations					
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method				
1	Operating Temperature Range	-55 to +125℃	B1, B3, F1 : −25 to +85°C R1, R7 : −55 to +125°C E4 : +10 to +85°C F5 : −30 to +85°C	Reference temperature : 25°C (2Δ, 3Δ, 4Δ, B1, B3, F1, R1 : 20°C)				
2	Rated Voltage	See the previous pages		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{O,p} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearance	No defects or abnormalities		Visual inspection				
4	Dimensions	Within the specified dimensions		Using calipers				
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when *300% of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V				
6	Insulation Resistance	C≤0.047μF : More than 10,000l C>0.047μF : $500\Omega \bullet F$	MΩ C : Nominal Capacitance	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25°C and 75%RH max. and within 2 minutes of charging, provided the charge/ discharge current is less than 50mA.				
7	Capacitance	Within the specified tolerance		The capacitance/Q/D.F. should be measured at 20/25℃ at the				
8	Q/ Dissipation Factor (D.F.)	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Char.				

Continued from the preceding page.

			Specifi	ications						
No.	lt€	em	Temperature Compensating Type	High Dielectric Type			Test Me	ethod		
		No bias	Within the specified tolerance (Table A-1)	B1, B3 : Within ±10% (-25 to +85°C) R1, R7 : Within ±15% (-55 to +125°C) R6 : Within ±15% (-55 to +85°C) E4 : Within +22/-56% (+10 to +85°C) F1 : Within +30/-80% (-25 to +85°C) F5 : Within +22/-82% (-30 to +85°C)	each specified temp. stage. (1)Temperature Compensatir The temperature coefficient is capacitance measured in stel When cycling the temperatur 5 (5C: +25 to +125℃/ΔC: + : +25 to +85℃/+20 to +85℃ the specified tolerance for the capacitance change as Table			ating Type It is determined using the Istep 3 as a reference. It is equentially from step 1 through It is +20 to +125°C: other temp. coeffs. It is capacitance should be within It is the temperature coefficient and It is is the capacitance of the temperature coefficient and It is a constant.		
							•			
		50% of		B1 : Within +10/–30%		ер 1		emperatence Tem	nperature ±2	
		the Rated Voltage		R1 : Within +15/–40% F1 : Within +30/–95%		2			5±3 (for other TC)	
		Vollage				3			perature ±2	
					- 4	4	125±3 (fo	r ∆C)/85=	±3 (for other TC)	
					Ę	5	Refere	ence Tem	perature ±2	
9	Capacitance Temperature Characteristics				(2) High Dielectric Constant Type The ranges of capacitance change compared with the 20°C value over the temperature ranges shown in the table should be within the specified ranges.* In case of applying voltage, the capacitance change should measured after 1 more min. with applying voltage in equilibration of each temp. stage. Step Temperature (°C) Applying Voltage			in the table should ce change should be voltage in		
							nperature (°C nce Tempere	•	Applying Voltage (V)	
		Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.) *Not apply to 1X/25V	2	2	-55±	±3 (for R1, R7, R6) ±3 (for B1, B3, F1) (for F5)/10±3 (for E4)		No bias	
				*Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour	3	Refere	ence Tempereture ±2		140 blas	
					4		5±3 (for R1, R7)/ :3 (for B1, B3, R6 F1, F5, E4)			
				and then set for 48±4 hours at room temperature.	5	Refere	nce Tempere	ture ±2		
				Perform the initial measurement.	6		-55±3 (for R1)/ -25±3 (for B1, F1)		50% of the rated	
					7		nce Tempere		voltage	
					8		125±3 (for R1)/ 85±3 (for B1, F1)			
			No removal of the terminations or other defect should occur			Solder the capacitor to the test jig (glass epoxy board) she Fig. 1a using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using reflow method and should be conducted with care so that soldering is uniform and free of defects such as heat sho *2N (GR□03), 5N (GR□15, GRM18)				
10	Adhesive	_			Ту	pe	а	b	(in mm)	
	of Termin	nation			GR□03		0.3	0.9		
					_GR□15		0.4	1.5		
				~ ~~	GRM18		1.0	3.0		
				Baked electrode or copper foil	GRM21		1.2 2.2	4.0 5.0		
			Fig. 1a	••	GRM31 GRM32		2.2	5.0		
			riy. ia		GRM43		3.5	7.0		
					GRM55		4.5	8.0		
					GRIVIN	,	4.5	0.0	5.6	

Continued from the preceding page.

<u> </u>	Continued fr	om the prec							
No.	lt <i>e</i>	em		cations		Test Method			
•0.			Temperature Compensating Type	High Dielectric Type					
		Appearance	No defects or abnormalities						
		Capacitance	Within the specified tolerance						
11	Vibration Resistance	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	Solder the capacitor on the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should b applied for a period of 2 hours in each 3 mutually perpendicul directions (total of 6 hours).				
			No crack or marked defect shou	uld occur	in Fig. 2a using a direction shown done either with	citor on the test jig (glass an eutectic solder. Then a in Fig. 3a for 5±1 sec. The an iron or using the reflotth care so that the solder as heat shock.	apply a force in the ne soldering should be w method and should		
12	2 Deflection		20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1 Capacitance meter 45 Fig. 3a		Type GR□03 GR□15 GRM18 GRM21 GRM31 GRM32 GRM43 GRM55	100 Fig. 2a	9 0.3 5 0.5 0 1.2 0 1.65 0 2.0 0 2.9 0 3.7		
13	Solderab Terminati	-	75% of the terminations are to be continuously	pe soldered evenly and	rosin (JIS-K-590) Preheat at 80 to	acitor in a solution of eth 2) (25% rosin in weight p 120°C for 10 to 30 secon immerse in an eutectic s at 230±5°C.	roportion) . ds.		
			The measured and observed ch specifications in the following ta						
		Appearance	No defects or abnormalities						
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±7.5% F1, F5, E4 : Within ±20%	Immerse the cap for 10±0.5 secon	acitor at 120 to 150°C for acitor in an eutectic sold inds. Set at room tempera	er solution at 270±5℃ ature for 24±2 hours		
14	Resistance to Soldering Heat	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max. W.V.: 6.3/4V : 0.05 max. (C<3.3μF) : 0.1 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max.	constant type), the Initial measuren Perform a heat ti	nent for high dielectric coreatment at 150+0/-10% temperature for 48±4 hold measurement.	onstant type C for one hour and		
		I.R.	More than 10,000M Ω or 500 Ω •	F (Whichever is smaller)					
	Dielectric Strength		No defects	,					

Continued from the preceding page.

			Specifi	cations	Test Method					
No.	Ite	em	Temperature Compensating Type	High Dielectric Type						
			The measured and observed chapecifications in the following ta							
		Appearance No defects or abnormalities								
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±7.5% F1, F5, E4 : Within ±20%	Fix the capacit manner and ur Perform the fiv shown in the fo	nder the same of the cycles accord	condition	s as (10).	atments	
				[B1, B3, R1, R6, R7, E4] W.V.: 25V min.: 0.025 max. W.V.: 16/10V: 0.035 max.	Set for 24±2 h hours (high die measure.	electric constan	t type) at	room tempera	ture, ther	
15	Temperature		30pF and over : Q≧1000	W.V. : 6.3/4V : 0.05 max. (C<3.3μF)	Step	1	2	3	4	
	Cycle	Q/D.F.	30pF and below : Q≧400+20C	: 0.05 max. (C≥3.3µF) : 0.1 max. (C≥3.3µF) [F1, F5]	Temp. (℃)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.	
			C : Nominal Capacitance (pF)	W.V. : 25V min.	Time (min.)	30±3	2 to 3	30±3	2 to 3	
			, ,	: 0.05 max. (C<0.1μF) : 0.09 max. (C≥0.1μF) W.V. : 16/10V : 0.125 max. W.V. : 6.3V : 0.15 max.	•Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hour and then set at room temperature for 48±4 hours. Perform the initial measurement.					
		I.R.	More than $10,000 \mathrm{M}\Omega$ or 500Ω	F (Whichever is smaller)						
		Dielectric Strength	No defects							
			The measured and observed che specifications in the following ta	· · · · · · · · · · · · · · · · · · ·						
		Appearance	No defects or abnormalities							
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5 : Within ±30%						
16	Humidity (Steady State)		30pF and over : Q≥350 10pF and over	[B1, B3, R1, R6, R7, E4] W.V.: 25V min.: 0.05 max. W.V.: 16/10V: 0.05 max. W.V.: 6.3/4V	Set the capacitor at 40±2°C and in 90 to 95% hum 500±12 hours. Remove and set for 24±2 hours (temperature comparts) or 48±4 hours (high dielectric constant type) temperature, then measure.			erature compe	ensating	
16		Q/D.F.	30pF and below: Q≥275+2.5C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	: 0.075 max. (C<3.3μF) : 0.125 max. (C≥3.3μF) [F1, F5] W.V. : 25V min. : 0.075 max. (C<0.1μF) : 0.125 max. (C≥0.1μF) W.V. : 16/10V : 0.15 max. W.V. : 6.3V : 0.2 max.		, ,		nsian type) at	TOOM	

Continued from the preceding page.

	. Item		Specifi	cations	
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed ch specifications in the following ta	•	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10V max.] F1, F5: Within +30/-40%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours (temperature
17	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25V min.: 0.05 max. W.V.: 16/10V: 0.05 max. W.V.: 6.3V : 0.075 max. (C<3.3μF) : 0.125 max. (C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.075 max. (C<0.1μF) : 0.125 max. (C≥0.1μF) W.V.: 16/10V: 0.15 max. W.V.: 6.3V: 0.2 max.	compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 48±4 hours at room temperature. Perform initial measurement.
		I.R.	More than 500MΩ or 25Ω • F (V	Vhichever is smaller)	
			The measured and observed ch specifications in the following ta	•	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±12.5% F1, F5, E4: Within ±30% [Except 10V max. and. C≥1.0µF] F1, F5: Within +30/−40% [10V max. and C≥1.0µF]	Apply *200% of the rated voltage at the maximum operating temperature ±3°C for 1000±12 hours. Set for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA.
18	High Temperature Load	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25V min.: 0.04 max. W.V.: 16/10V: 0.05 max. W.V.: 6.3V : 0.075 max.(C≤3.3μF) : 0.125 max.(C≥3.3μF) [F1, F5] W.V.: 25V min. : 0.075 max.(C<0.1μF) : 0.125 max.(C≥0.1μF) W.V.: 16/10V: 0.15 max.	•Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximum operating temperature ±3℃ for one hour. Remove and set for 48±4 hours at room temperature. Perform initial measurement. *150% for 500V
				W.V. : 6.3V : 0.2 max.	

Continued from the preceding page.

Table A-1

(1)

		Capacitance Change from 25°C (%)							
Char.	Nominal Values (ppm/°C)*1	-55		-30		-10			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11		
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21		
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32		
6R	-220± 60	3.02	1.28	2.08	0.88	1.32	0.56		
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.95		
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44		
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21		
1X	+350 to -1000	_	_	_	_	_	_		

^{*1 :} Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for ΔC)/85°C (for other TC).

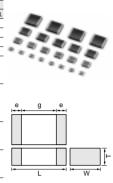
(2)

		Capacitance Change from 20℃ (%)							
Char.	Nominal Values (ppm/°C)*2	-55		-25		-10			
		Max.	Min.	Max.	Min.	Max.	Min.		
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	-0.18		
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36		
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75		
2P	-150± 60	_	_	1.32	0.41	0.88	0.27		
3P	-150±120	_	_	1.65	0.14	1.10	0.09		
4P	-150±250	_	_	2.36	-0.45	1.57	-0.30		
2R	-220± 60	_	_	1.70	0.72	1.13	0.48		
3R	-220±120	_	_	2.03	0.45	1.35	0.30		
4R	-220±250	_	_	2.74	-0.14	1.83	-0.09		
2S	-330± 60	_	_	2.30	1.22	1.54	0.81		
3S	-330±120	_	_	2.63	0.95	1.76	0.63		
4S	-330±250	_	_	3.35	0.36	2.23	0.24		
2T	-470± 60	_	_	3.07	1.85	2.05	1.23		
3T	-470±120	_	_	3.40	1.58	2.27	1.05		
4T	-470±250	_	_	4.12	0.99	2.74	0.66		
3U	-750±120	_	_	4.94	2.84	3.29	1.89		
4U	-750±250	_	_	5.65	2.25	3.77	1.50		

^{*2 :} Nominal values denote the temperature coefficient within a range of 20℃ to 125℃ (for ΔC)/85℃ (for other TC).

Chip Monolithic Ceramic Capacitors

Thin Layer Large Capacitance Type


■ Features

- 1. Smaller size and higher capacitance value
- 2. High reliability and no polarity
- 3. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency

■ Applications

General electronic equipment

Part Number		Dime	nsions (mi	n)		
Part Number	L	W	Т	e min.	g min.	
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3	
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.1	0.2 to 0.5	0.5	
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GRM216			0.6 ±0.1			
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7	
GRM21B			1.25 ±0.1			
GRM316		1.6 ±0.15	0.6 ±0.1			
GRM319	3.2 ±0.15		0.85 ±0.1	0.3 to 0.8	1.5	
GRM31M			1.15 ±0.1	0.3 10 0.6		
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			
GRM32C			1.6 ±0.2			
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 ±0.2	0.3	1.0	
GRM32E			2.5 ±0.2			
GRM43D			2.0 ±0.2			
GRM43E	4.5 ±0.4	3.2 ±0.3	2.5 ±0.2	0.3	2.0	
GRM43S			2.8 ±0.2			
GRM55F	5.7 ±0.4	5.0 ±0.4	3.2 ±0.2	0.3	2.0	

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188R61E474KA12	X5R (EIA)	25	0.47μF ±10%	1.60	0.80	0.80
GRM188R61E105KA12	X5R (EIA)	25	1.0μF ±10%	1.60	0.80	0.80
GRM21BR61E105KA99	X5R (EIA)	25	1.0μF ±10%	2.00	1.25	1.25
GRM219R61E225KA12	X5R (EIA)	25	2.2μF ±10%	2.00	1.25	0.85
GRM21BR61E225KA12	X5R (EIA)	25	2.2μF ±10%	2.00	1.25	1.25
GRM21BR61E475KA12	X5R (EIA)	25	4.7μF ±10%	2.00	1.25	1.25
GRM319R61E475KA12	X5R (EIA)	25	4.7μF ±10%	3.20	1.60	0.85
GRM31CR61E106KA12	X5R (EIA)	25	10μF ±10%	3.20	1.60	1.60
GRM188R61C474KA93	X5R (EIA)	16	0.47μF ±10%	1.60	0.80	0.80
GRM188R61C105KA93	X5R (EIA)	16	1.0μF ±10%	1.60	0.80	0.80
GRM216R61C105KA88	X5R (EIA)	16	1.0μF ±10%	2.00	1.25	0.60
GRM219R61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.00	1.25	0.85
GRM21BR61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.00	1.25	1.25
GRM316R61C225KA88	X5R (EIA)	16	2.2μF ±10%	3.20	1.60	0.60
GRM21BR61C335KA88	X5R (EIA)	16	3.3μF ±10%	2.00	1.25	1.25
GRM21BR61C475KA88	X5R (EIA)	16	4.7μF ±10%	2.00	1.25	1.25
GRM319R61C475KA88	X5R (EIA)	16	4.7μF ±10%	3.20	1.60	0.85
GRM32ER61C226KE20	X5R (EIA)	16	22μF ±10%	3.20	2.50	2.50
GRM43ER61C226KE01	X5R (EIA)	16	22μF ±10%	4.50	3.20	2.50
GRM155R61A154KE19	X5R (EIA)	10	0.15μF ±10%	1.00	0.50	0.50
GRM155R61A224KE19	X5R (EIA)	10	0.22μF ±10%	1.00	0.50	0.50
GRM185R61A105KE36	X5R (EIA)	10	1.0μF ±10%	1.60	0.80	0.50
GRM188R61A225KE34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM188R61A225ME34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM216R61A225KE24	X5R (EIA)	10	2.2μF ±10%	2.00	1.25	0.60
GRM219R61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.00	1.25	0.85
GRM316R61A225KA01	X5R (EIA)	10	2.2μF ±10%	3.20	1.60	0.60
GRM219R61A335KE19	X5R (EIA)	10	3.3μF ±10%	2.00	1.25	0.85
GRM316R61A335KE19	X5R (EIA)	10	3.3μF ±10%	3.20	1.60	0.60
GRM219R61A475KE34	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	0.85
GRM316R61A475KE19	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.60
GRM319R61A475KA01	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.85
GRM21BR61A106KE19	X5R (EIA)	10	10μF ±10%	2.00	1.25	1.25
GRM21BR61A106ME19	X5R (EIA)	10	10μF ±20%	2.00	1.25	1.25
GRM319R61A106KA19	X5R (EIA)	10	10μF ±10%	3.20	1.60	0.85
GRM31MR61A106KE19	X5R (EIA)	10	10μF ±10%	3.20	1.60	1.15
GRM32ER61A226KE20	X5R (EIA)	10	22μF ±10%	3.20	2.50	2.50
GRM43ER61A476KE19	X5R (EIA)	10	47μF ±10%	4.50	3.20	2.50
GRM033R60J153KE01	X5R (EIA)	6.3	15000pF ±10%	0.6	0.3	0.3

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM033R60J223KE01	X5R (EIA)	6.3	22000pF ±10%	0.6	0.3	0.3
GRM033R60J333KE01	X5R (EIA)	6.3	33000pF ±10%	0.6	0.3	0.3
GRM033R60J393KE19	X5R (EIA)	6.3	39000pF ±10%	0.6	0.3	0.3
GRM033R60J473KE19	X5R (EIA)	6.3	47000pF ±10%	0.6	0.3	0.3
GRM033R60J104KE19	X5R (EIA)	6.3	0.10μF ±10%	0.6	0.3	0.3
GRM155R60J154KE01	X5R (EIA)	6.3	0.15μF ±10%	1.00	0.50	0.50
GRM155R60J224KE01	X5R (EIA)	6.3	0.22μF ±10%	1.00	0.50	0.50
GRM155R60J334KE01	X5R (EIA)	6.3	0.33μF ±10%	1.00	0.50	0.50
GRM155R60J474KE19	X5R (EIA)	6.3	0.47μF ±10%	1.00	0.50	0.50
GRM155R60J105KE19	X5R (EIA)	6.3	1.0μF ±10%	1.00	0.50	0.50
GRM185R60J105KE21	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J105KE26	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J225KE26	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.50
GRM188R60J225KE01	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J225KE19	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	1.60	0.80	0.80
GRM219R60J475KE01	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J475KE32	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	0.85
GRM219R60J106ME19	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	0.85
GRM21BR60J106KE01	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106ME01	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	1.25
GRM21BR60J106ME19	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	1.25
GRM319R60J106KE01	X5R (EIA)	6.3	10μF ±10%	3.20	0.85	1.60
GRM319R60J106KE19	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	0.85
GRM31MR60J106KE19	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	1.15
GRM31CR60J156KE19	X5R (EIA)	6.3	15μF ±10%	3.20	1.60	1.60
GRM21BR60J226ME39	X5R (EIA)	6.3	22μF ±20%	2.00	1.25	1.25
GRM31CR60J226KE19	X5R (EIA)	6.3	22μF ±10%	3.20	1.60	1.60
GRM31CR60J226ME19	X5R (EIA)	6.3	22μF ±20%	3.20	1.60	1.60
GRM32DR60J226KA01	X5R (EIA)	6.3	22μF ±10%	3.20	2.50	2.00
GRM32DR60J336ME19	X5R (EIA)	6.3	33μF ±10%	3.20	2.50	2.00
GRM43DR60J336KE01	X5R (EIA)	6.3	33μF ±10%	4.50	3.20	2.00
GRM31CR60J476ME19	X5R (EIA)	6.3	47μF ±20%	3.20	1.60	1.60
GRM32ER60J476ME20	X5R (EIA)	6.3	47μF ±20%	3.20	2.50	2.50
GRM43ER60J476KE01	X5R (EIA)	6.3	47μF ±10%	4.50	3.20	2.50
GRM32ER60J107ME20	X5R (EIA)	6.3	100μF ±20%	3.20	2.50	2.50
GRM43SR60J107ME20	X5R (EIA)	6.3	100μF ±20%	4.50	3.20	2.80
GRM188R60G106ME47	X5R (EIA)	4	10μF ±20%	1.60	0.80	0.80
GRM55ER71E156KA01	X7R (EIA)	25	15μF ±10%	5.70	5.00	2.50
GRM31CR71C106KAC7	X7R (EIA)	16	10μF ±10%	3.20	1.60	1.60
GRM32ER71A226KE20	X7R (EIA)	10	22μF ±10%	3.20	2.50	2.50
GRM32ER71A226ME20	X7R (EIA)	10	22μF ±20%	3.20	2.50	2.50
GRM43ER71A226KE01	X7R (EIA)	10	22μF ±10%	4.50	3.20	2.50
GRM155F51A474ZE01	Y5V (EIA)	10	0.47μF +80/-20%	1.00	0.50	0.50
GRM188F51A225ZE01	Y5V (EIA)	10	2.2μF +80/-20%	1.60	0.80	0.80
GRM188F51A475ZE20	Y5V (EIA)	10	4.7μF +80/-20%	1.60	0.80	0.80
GRM31CF51A226ZE01	Y5V (EIA)	10	22μF +80/-20%	3.20	1.60	1.60
GRM32CF51A226ZA01	Y5V (EIA)	10	22μF +80/-20%	3.20	2.50	1.60
GRM155F50J105ZE01	Y5V (EIA)	6.3	1.0μF +80/-20%	1.00	0.50	0.50
GRM188F50J225ZE01	Y5V (EIA)	6.3	2.2μF +80/-20%	1.60	0.80	0.80
GRM188F50J475ZE20	Y5V (EIA)	6.3	4.7μF +80/-20%	1.60	0.80	0.80
GRM21BF50J106ZE01	Y5V (EIA)	6.3	10μF +80/-20%	2.00	1.25	1.25
GRM31CF50J226ZE01	Y5V (EIA)	6.3	22μF +80/-20%	3.20	1.60	1.60
GRM32EF50J107ZE20	Y5V (EIA)	6.3	100μF +80/-20%	3.20	2.50	2.50

Specifications and Test Methods

No.	Ite	em	Specifications		Test Method			
1	Operating Tempera Range		B1, B3, F1 : −25 to +85°C R6 : −55 to +85°C F5 : −30 to +85°C C8 : −55 to +105°C, C7 : -55 to +125°C	Reference temperature : 25℃ (B1, B3, F1 : 20℃)				
2	Rated Voltage		See the previous pages	The rated voltage is defined as the maximum voltage by applied continuously to the capacitor. When AC voltage is superimposed on DC voltage whichever is larger, should be maintained within voltage range.		itor. voltage, V ^{p.p} or V ^{o.p} ,		
3	Appearar	nce	No defects or abnormalities	Visual insp	ection			
4	Dimensio	ns	Within the specified dimensions	Using calip	ers			
5	Dielectric	Strength	No defects or abnormalities	is applied b	should be observed when 2509 between the terminations for 1 he charge/discharge current is l	to 5 seconds,		
6	Insulation Resistant		More than 50Ω ∙ F	not exceed 75%RH ma	ion resistance should be measuing the rated voltage at references, and within 1 minutes of charcharge current is less than 50m.	ce temperature and ging, provided the		
7	Capacitance		*Table 1 GRM155 B3/R6 1A 124 to 224 GRM185 B3/R6 1A 105 GRM188 B3/R6 1C/1A 225 GRM219 B3/R6 1A 475 GRM21B B3/R6 1C/1A 106		The capacitance should be measured at reference temperature at the frequency and voltage shown in the table. Capacitance Frequency Voltage			
8	Dissipation Factor (D.F.)		B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max. *Table 1 GRM155 B3/R6 1A 124 to 224 GRM185 B3/R6 1A 105 GRM188 B3/R6 1C/1A 225 GRM219 B3/R6 1A 475 GRM21B B3/R6 1C/1A 106	C≦10μF (10V min.)*¹ 1±0.1kHz 1.0±0.2 C≦10μF (6.3V max.) 1±0.1kHz 0.5±0.1		Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms		
		No bias	B1, B3: Within ±10% (-25 to +85°C) F1: Within +30/-80% (-25 to +85°C) R6: Within ±15% (-55 to +85°C) F5: Within +22/-82% (-30 to +85°C) C7: Within ±22% (-55 to +125°C) C8: Within ±22% (-55 to +105°C)	each speci The ranges reference t shown in the In case of a measured equilibration	itance change should be meas fied temp. stage. s of capacitance change compa emperature value over the tem ne table should be within the sp applying voltage, the capacitan after 1 more min. with applying in of each temp. stage.	ared with the perature ranges pecified ranges.* ce change should be voltage in		
				Step	Temperature (°C)	Applying Voltage (V)		
9	Capacitance Temperature			1 2	Reference tempereture ±2 -55±3 (for R6, C7, C8)/ -25±3 (for B1, B3, F1) -30±3 (for F5)			
	Characteristics			3	Reference tempereture ±2	No bias		
		50% of the Rated	B1: Within +10/-30%	4	85±3 (for B1, B3, F1, R6, F5) 125±3 (for C7)/ 105±3 (for C8)			
		Voltage	F1: Within +30/—95%	5	20±2			
				6	-25±3 (for B1, F1)	50% of the rated		
				7	20±2	voltage		
				8	85±3 (for B1, F1)			
				•Initial mea Perform a l	asurement for high dielectric co heat treatment at 150 +0/-10° r 48±4 hours at room temperat e initial measurement.	C for one hour and		

Specifications and Test Methods

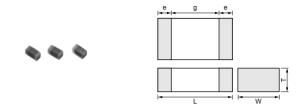
Ontinued from the preceding page.

No.	o. Item		Specifications		Test Me	ethod	
			No removal of the terminations or other defects should occur	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 1a using an eutectic solder. Then apply 10N⁵ force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *5N: GR□15/GRM18, 2N: GR□33			
10	Adhesive Strength of Termination		Solder resist Baked electrode or copper foil Fig. 1a	Type GR□03 GR□15 GRM18 GRM21 GRM31 GRM32 GRM43 GRM55	a 0.3 0.4 1.0 1.2 2.2 2.2 3.5 4.5	b 0.9 1.5 3.0 4.0 5.0 5.0 7.0 8.0	0.3 0.5 1.2 1.65 2.0 2.9 3.7 5.6
		Appearance	No defects or abnormalities	Solder the capacito	or on the test ii	g (glass epoxy	board) in the
		Capacitance	Within the specified tolerance	same manner and	-		•
11	Vibration	D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	The capacitor shot having a total amp uniformly between frequency range, for the traversed in applied for a period directions (total of	litude of 1.5mm the approxima rom 10 to 55Hz proximately 1 r d of 2 hours in	n, the frequence te limits of 10 z and return to ninute. This m	cy being varied and 55Hz. The 10Hz, should otion should be
12	12 Deflection		No cracking or marking defects should occur 20 50 Pressurizing speed: 1.0mm/sec. Pressurize Capacitance meter 45 45 Fig.3a	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2a using an eutectic solder. Then apply a force in the direction shown in Fig. 3a for 5 ± 1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
13	Solderability of Termination		75% of the terminations is to be soldered evenly and continuously	Immerse the capac rosin (JIS-K-5902) Preheat at 80 to 12 After preheating, ir 2±0.5 seconds at 2	(25% rosin in 20℃ for 10 to 3 mmerse in an e	weight proport 0 seconds.	ion) .

Continued from the preceding page.

No.	Ite	em	Specifications			Tes	st Method	d		
		Appearance Capacitance Change	No defects or abnormalities B1, B3, R6, C7, C8: Within ±7.5% F1, F5: Within ±20%	lr fc	mmerse the or 10±0.5 sec	apacitor at 120 capacitor in an conds. Set at recompensating	eutectic s	solder solution erature for 24:	£2 hours	
		Q/D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	(temperature compensating type) or 48±4 hours (high dielectric constant type), then measure.						
	Resistance	I.R.	More than 50Ω • F			rement for high at treatment at				
14	to Soldering Heat	Dielectric Strength	No detects		then set at room temperature for 48±4 hours Perform the initial measurement. *Preheating for GRM32/43/55 Step Temperature			1 hours.	ime	
					1	100 t	o 120℃	1	min.	
					2	170 t	min.			
		Appearance	No defects or abnormalities	F	ix the capac	itor to the supp	orting jig	in the same m	nanner and	
		Capacitance Change	B1, B3, R6, C7, C8 : Within ±7.5% F1, F5 : Within ±20%	P	under the same conditions as (10). Perform the five cycles according to the four heat treatme					
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	S h	 shown in the following table. Set for 24±2 hours (temperature compensati hours (high dielectric constant type) at room 				-	
		I.R.	More than 50Ω • F	m	measure.					
15	Temperature Sudden				Step	1	2	3	4	
13	Change				Temp. (℃)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.	
		Dielectric Strength	No defects		Time (min.)	30±3	2 to 3	30±3	2 to 3	
		-			 Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hour and then set at room temperature for 48±4 hours. Perform the initial measurement. 					
		Appearance	No defects or abnormalities			d voltage at 40			-	
	High	Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%		00±12 hours Initial measu	. The charge/d rement	ischarge	current is less	than 50mA.	
16		D.F.	B1, B3, R6, C7, C8 : 0.2 max. F1, F5 : 0.4 max.	P th	erform a hea nen let sit for	at treatment at 48±4 hours at				
	Humidity (Steady)	I.R.	More than 12.5Ω • F	•I	 •Measurement after test Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 48±4 hours at room temperature, then measure 					
		Appearance	No defects or abnormalities	A	pply 150% o	f the rated volt	age for 1	000±12 hours	at the	
		Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	ro	oom tempera	erating tempera ture, then mea	sure.		±4 hours at	
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.4 max.	•1	The charge/discharge current is less than 50mA. •Initial measurement					
17	Durability			th in •I P	Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement. •Measurement after test Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 48±4 hours at room temperature, then measure.					

Chip Monolithic Ceramic Capacitors


Low Dissipation Type

■ Features

- 1. Mobile Telecommunication and RF module, mainly
- 2. Quality improvement of telephone call, Low power Consumption, yield ratio improvement

■ Applications

VCO, PA, Mobile Telecommunication

Part Number		Dir	nensions (ı	mm)	
Part Number	L	W	T	е	g min.
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GJM0335C1ER50CB01	COG (EIA)	25	0.50 ±0.25pF	0.60	0.30	0.30
GJM0335C1ER75CB01	COG (EIA)	25	0.75 ±0.25pF	0.60	0.30	0.30
GJM0335C1E1R0CB01	COG (EIA)	25	1.0 ±0.25pF	0.60	0.30	0.30
GJM0335C1E2R0CB01	COG (EIA)	25	2.0 ±0.25pF	0.60	0.30	0.30
GJM0335C1E3R0CB01	COG (EIA)	25	3.0 ±0.25pF	0.60	0.30	0.30
GJM0335C1E4R0CB01	COG (EIA)	25	4.0 ±0.25pF	0.60	0.30	0.30
GJM0335C1E5R0CB01	COG (EIA)	25	5.0 ±0.25pF	0.60	0.30	0.30
GJM0335C1E6R0DB01	COG (EIA)	25	6.0 ±0.5pF	0.60	0.30	0.30
GJM1555C1HR50CB01	C0G (EIA)	50	0.50 ±0.25pF	1.00	0.50	0.50
GJM1555C1HR75CB01	C0G (EIA)	50	0.75 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R0CB01	C0G (EIA)	50	1.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R1CB01	C0G (EIA)	50	1.1 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R2CB01	C0G (EIA)	50	1.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R3CB01	COG (EIA)	50	1.3 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R5CB01	COG (EIA)	50	1.5 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R6CB01	COG (EIA)	50	1.6 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R8CB01	COG (EIA)	50	1.8 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R0CB01	COG (EIA)	50	2.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R2CB01	C0G (EIA)	50	2.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R4CB01	C0G (EIA)	50	2.4 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R7CB01	C0G (EIA)	50	2.7 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R0CB01	C0G (EIA)	50	3.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R3CB01	C0G (EIA)	50	3.3 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R6CB01	C0G (EIA)	50	3.6 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R9CB01	C0G (EIA)	50	3.9 ±0.25pF	1.00	0.50	0.50
GJM1555C1H4R0CB01	C0G (EIA)	50	4.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H4R3CB01	C0G (EIA)	50	4.3 ±0.25pF	1.00	0.50	0.50
GJM1555C1H4R7CB01	C0G (EIA)	50	4.7 ±0.25pF	1.00	0.50	0.50
GJM1555C1H5R0CB01	C0G (EIA)	50	5.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H5R1CB01	COG (EIA)	50	5.1 ±0.25pF	1.00	0.50	0.50
GJM1555C1H5R6CB01	COG (EIA)	50	5.6 ±0.25pF	1.00	0.50	0.50
GJM1555C1H6R0CB01	C0G (EIA)	50	6.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H6R0DB01	C0G (EIA)	50	6.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H6R2CB01	COG (EIA)	50	6.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H6R8CB01	C0G (EIA)	50	6.8 ±0.25pF	1.00	0.50	0.50
GJM1555C1H7R0CB01	COG (EIA)	50	7.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H7R0DB01	COG (EIA)	50	7.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H7R5CB01	C0G (EIA)	50	7.5 ±0.25pF	1.00	0.50	0.50

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GJM1555C1H8R0CB01	C0G (EIA)	50	8.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H8R0DB01	COG (EIA)	50	8.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H8R2CB01	COG (EIA)	50	8.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H9R0CB01	COG (EIA)	50	9.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H9R0DB01	COG (EIA)	50	9.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H9R1CB01	COG (EIA)	50	9.1 ±0.25pF	1.00	0.50	0.50
GJM1555C1H100JB01	COG (EIA)	50	10 ±5%	1.00	0.50	0.50
GJM1555C1H100RB01	C0G (EIA)	50	10 ±2.5%	1.00	0.50	0.50
GJM1555C1H120JB01	COG (EIA)	50	12 ±5%	1.00	0.50	0.50
GJM1555C1H150JB01	COG (EIA)	50	15 ±5%	1.00	0.50	0.50
GJM1555C1H180JB01	COG (EIA)	50	18 ±5%	1.00	0.50	0.50

2 R 3 A 4 D 5 D 6 In (i 7 C 8 Q			Specifications					
2 R 3 A 4 D 5 D 6 In (i 7 C 8 Q	lte	em	Temperature Compensating Type		Test Method			
3 A 4 D 5 D 6 In (I. 7 C 8 Q	Operating Temperati		-55 to +125℃	Reference Temperature : (2C, 3C, 4C : 20°C)	25℃			
4 D 5 D 6 In (I. 7 C 8 Q	2 Rated Voltage		See the previous pages	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{o.p} , whichever is larger, should be maintained within the rated voltage range.				
5 D 6 In (I. 7 C 8 Q Cap 9 Ten	Appearar	nce	No defects or abnormalities	Visual inspection				
6 In (I. 7 C 8 Q C 4 C 7 C 7 C 7 C 7 C 7 7	Dimensio	ns	Within the specified dimensions	Using calipers				
6 (I 7 C 8 Q Cap 9 Ten	Dielectric	Strength	No defects or abnormalities	is applied between the ter	erved when 300% of the rated voltage rminations for 1 to 5 seconds, narge current is less than 50mA.			
8 Q	6 Insulation Resistance (I.R.)		10,000M Ω min. or 500 Ω • F min. (Whichever is smaller)		should be measured with a DC e rated voltage at 25°C and 75%RH s of charging.			
Cap 9 Ten	7 Capacitance		Within the specified tolerance	The capacitance/Q should frequency and voltage sh	d be measured at 25℃ at the own in the table.			
9 Ten	8 Q		30pF max. : Q≥400+20C C : Nominal Capacitance (pF)		1±0.1MHz 0.5 to 5Vrms			
9 Ten	Characteristics Capacitance Drift Within ±0.2% or ±0.05pF (Whichever is larger.)		Within the specified tolerance (Table A)	each specified temperatu	•			
9 Ten			Within the specified tolerance (Table A)	Temperature Compensation The temperature coefficient capacitance measured in	ent is determined using the			
			Temperature Characteristics Capacita	Temperature		·	When cycling the temperature sequentially from step 5, (5C: +25 to +125°C: other temp. coeffs.: +20 to 1 capacitance should be within the specified tolerance f temperature coefficient and capacitance change as T. The capacitance driff is calculated by dividing the diffe between the maximum and minimum measured value 1, 3 and 5 by the capacitance value in step 3. Step Temperature (°C) 1 Reference Temp. ±2 2 -55±3 3 Reference Temp. ±2 4 125±3	
			No removal of the terminations or other defect should occur.	Fig. 1 using a eutectic solo with the test jig for 10±1 so with an iron or using the rewith care so that the solde as heat shock.	Reference Temp. ±2 Pe test jig (glass epoxy board) shown in oder. Then apply a 5N* force in parallel ec. The soldering should be done either efflow method and should be conducted wring is uniform and free of defects such *2N (GJM03) Solder resist Baked electrode or copper foil a b c 0.3 0.9 0.3 0.4 1.5 0.5 (in mm) Fig. 1			

J (Continued	from	the	preceding	page.
-----	-----------	------	-----	-----------	-------

			Specifications					
Vo.	Ite	em	Temperature Compensating Type	Test Method				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the				
11	Vibration Resistance	Capacitance Q	Within the specified tolerance 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motior having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).				
	2 Deflection		No cracking or marking defects should occur	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.				
12			Type a b c GJM03 0.3 0.9 0.3 GJM15 0.4 1.5 0.5 Fig. 2	20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1 Capacitance meter 45 (in mm)				
13		Solderability of 75% of the terminations are to be soldered evenly and continuously.		Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°				
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects	Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5℃ for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.				
14	Resistance to Soldering	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)					
	Heat	Q	30pF and below : Q≥400+20C C : Nominal Capacitance (pF)					
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	-				
		Dielectric Strength	No failure The measured and observed characteristics should satisfy the					
			specifications in the following table.	Fix the capacitor to the supporting jig in the same manner and				
		Appearance	No marking defects	under the same conditions as (10). Perform the five cycles				
	. .	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	according to the four heat treatments listed in the following table Let sit for 24±2 hours at room temperature, then measure.				
5	Temperature Cycle	Q	30pF and below : Q≧400+20C	Step 1 2 3 4				
			C : Nominal Capacitance (pF)	Temp. (°C) Min. Operating Room Max. Operating Room Temp. +3 Temp. Temp. +3 Temp.				
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	Time (min.) 30±3 2 to 3 30±3 2 to 3				
		Dielectric Strength	No failure					
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects]				
		-		Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours.				
16	Humidity,	•	·					
16	Humidity, Steady State	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger) 10pF and over, 30pF and below : Q≥275+ ½ C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)					

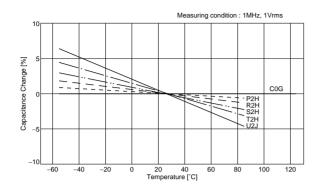
Continued from the preceding page.

			Specifications			
No.	Ite	em	Temperature Compensating Type	Test Method		
			The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
17	Humidity Load	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours.		
17		Q	30pF and below : Q≥100+ ½ C C : Nominal Capacitance (pF)	Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.		
		I.R.	More than 500MΩ or 25Ω • F (Whichever is smaller)			
		Dielectric Strength	No failure			
		The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects			
	High	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours		
18	Temperature Load	ad Q 10pl	10pF and over, 30pF and below : Q≥275+ ½ C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	(temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.		
		I.R.	More than 1,000M Ω or 50 Ω • F (Whichever is smaller)			
		Dielectric Strength	No failure			
19	ESR		0.5pF≦C≦1pF : 350mΩ • pF below 1pF <c≦5pf 300mω="" :="" below<br="">5pF<c≦10pf 250mω="" :="" below<="" td=""><td>The ESR should be measured at room Temperature. and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.</td></c≦10pf></c≦5pf>	The ESR should be measured at room Temperature. and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.		
			10pF <c≦20pf 400mω="" :="" below<="" td=""><td>The ESR should be measured at room Temperature. and frequency 500±50MHz with the equivalent of HP8753B.</td></c≦20pf>	The ESR should be measured at room Temperature. and frequency 500±50MHz with the equivalent of HP8753B.		

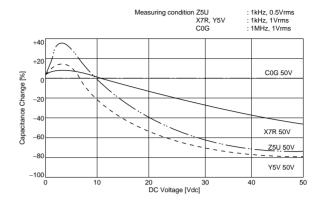
Table A

	T O		Cap	oacitance Change	e from 25℃ Value	(%)	
Char. Code	Temp. Coeff. (ppm/°c) *1	− 55℃		−30°C		−10 ℃	
		Max.	Min.	Max.	Min.	Max.	Min.
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

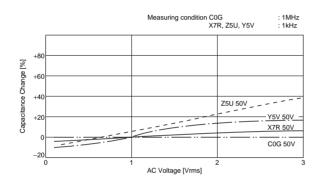
^{*1 :} Nominal values denote the temperature coefficient within a range of 25 to 125°C.

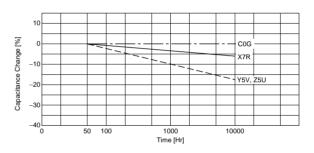

(2)

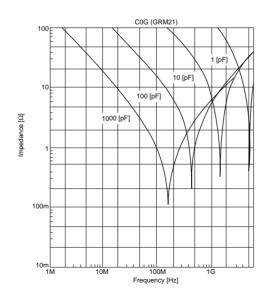
• ,	·							
			Cap	oacitance Change	e from 20°C Value	(%)		
Char.	Nominal Values (ppm/°C) *2	-5	5℃	-2	5℃	-1	0℃	
	(ββιίί/ C) · 2	Max.	Min.	Max.	Min.	Max.	Min.	
2C	0±60	0.82	-0.45	0.49	-0.27	0.33	-0.18	
3C	0±120	0.37	-0.90	0.82	-0.54	0.55	-0.36	
4C	0±250	0.56	-0.88	1.54	-1.13	1.02	-0.75	

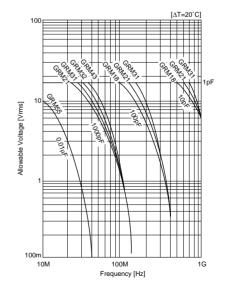

^{*2 :} Nominal values denote the temperature coefficient within a range of 20 to 125°C.

GRM Series Data


■ Capacitance-Temperature Characteristics

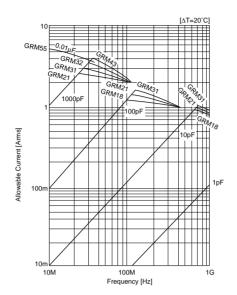

■ Capacitance-DC Voltage Characteristics

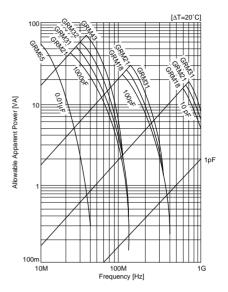

■ Capacitance-AC Voltage Characteristics


■ Capacitance Change-Aging

■ Impedance-Frequency Characteristics

■ Allowable Voltage-Frequency




GRM Series Data

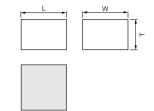
Continued from the preceding page.

■ Allowable Current-Frequency

■ Allowable Apparent Power

Chip Monolithic Ceramic Capacitors

Microchips


■ Features

- 1. Better micro wave characteristics
- 2. Suitable for by-passing
- 3. High density mounting

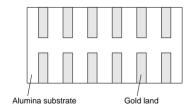
■ Applications

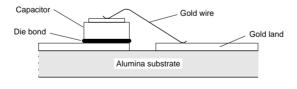
- 1. Optical device for telecommunication
- 2. IC, IC packaging built-in
- 3. Measuring equipment

Part Number	Dimensions (mm)				
Part Number	L	W	T		
GMA05X	0.5 ±0.05	0.5 ±0.05	0.35 ±0.05		
GMA085	0.8 ±0.05	0.8 ±0.05	0.5 ±0.1		

Part Number	TC Cod (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GMA05XR72A101MD01	X7R (EIA)	100	100pF ±20%	0.5	0.5	0.35
GMA05XR72A151MD01	X7R (EIA)	100	150pF ±20%	0.5	0.5	0.35
GMA05XR72A221MD01	X7R (EIA)	100	220pF ±20%	0.5	0.5	0.35
GMA05XR72A331MD01	X7R (EIA)	100	330pF ±20%	0.5	0.5	0.35
GMA085R72A331MD01	X7R (EIA)	100	330pF ±20%	0.8	0.8	0.5
GMA085R72A471MD01	X7R (EIA)	100	470pF ±20%	0.8	0.8	0.5
GMA085R72A681MD01	X7R (EIA)	100	680pF ±20%	0.8	0.8	0.5
GMA085R72A102MD01	X7R (EIA)	100	1000pF ±20%	0.8	0.8	0.5
GMA05XF52A102ZD01	Y5V (EIA)	100	1000pF +80/-20%	0.5	0.5	0.35
GMA085F52A103ZD01	Y5V (EIA)	100	10000pF +80/-20%	0.8	0.8	0.5
GMA05XR71H161MD01	X7R (EIA)	50	160pF ±20%	0.5	0.5	0.35
GMA05XR71H221MD01	X7R (EIA)	50	220pF ±20%	0.5	0.5	0.35
GMA05XR71H331MD01	X7R (EIA)	50	330pF ±20%	0.5	0.5	0.35
GMA05XR71H471MD01	X7R (EIA)	50	470pF ±20%	0.5	0.5	0.35
GMA05XR71C431MD01	X7R (EIA)	16	430pF ±20%	0.5	0.5	0.35
GMA05XR71C471MD01	X7R (EIA)	16	470pF ±20%	0.5	0.5	0.35
GMA05XR71C681MD01	X7R (EIA)	16	680pF ±20%	0.5	0.5	0.35
GMA05XR71C102MD01	X7R (EIA)	16	1000pF ±20%	0.5	0.5	0.35
GMA085R71C102MD01	X7R (EIA)	16	1000pF ±20%	0.8	0.8	0.5
GMA05XR71C152MD01	X7R (EIA)	16	1500pF ±20%	0.5	0.5	0.35
GMA085R71C152MD01	X7R (EIA)	16	1500pF ±20%	0.8	0.8	0.5
GMA05XR71C222MD01	X7R (EIA)	16	2200pF ±20%	0.5	0.5	0.35
GMA085R71C222MD01	X7R (EIA)	16	2200pF ±20%	0.8	0.8	0.5
GMA085R71C332MD01	X7R (EIA)	16	3300pF ±20%	0.8	0.8	0.5
GMA085R71C472MD01	X7R (EIA)	16	4700pF ±20%	0.8	0.8	0.5
GMA085R71C682MD01	X7R (EIA)	16	6800pF ±20%	0.8	0.8	0.5
GMA085R71C103MD01	X7R (EIA)	16	10000pF ±20%	0.8	0.8	0.5
GMA05XF51C472ZD01	Y5V (EIA)	16	4700pF +80/-20%	0.5	0.5	0.35
GMA05XF51C682ZD01	Y5V (EIA)	16	6800pF +80/-20%	0.5	0.5	0.35
GMA085F51C473ZD01	Y5V (EIA)	16	47000pF +80/-20%	0.8	0.8	0.5
GMA05XF51A153ZD01	Y5V (EIA)	10	15000pF +80/-20%	0.5	0.5	0.35
GMA085F51A104ZD01	Y5V (EIA)	10	0.10μF +80/-20%	0.8	0.8	0.5

No.	Ite	em	Specifications		Test Method			
1	Operating Tempera Range	•	R1, R7 : −55 to +125°C B1, F1 : −25 to +85°C F5 : −30 to +85°C	Reference (B1, R1, F	Temperature:25℃ I : 20℃)			
2	Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{o.p} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearar	nce	No defects or abnormality	Visual insp	ection			
4	Dimensio	ns	See the previous pages.	Visual insp	Visual inspection			
5	Dielectric	: Strength	No defects or abnormality	rated voltage	No failure should be observed when a voltage of 250% of rated voltage is applied between the both terminations for seconds, provided the charge/discharge current is less that			
6	Insulation Resistance		10,000MΩ min.	voltage not	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at normal temperature and humidity and within 2 minutes of charging.			
7	Capacita	nce	Within the specified tolerance	-	tance/D.F. should be measure re at the frequency And voltage			
8	Dissipatio (D.F.)	n Factor	B1, R1, R7 : 0.035 max. F1, F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)	Freque	Frequency			
		No bias	B1: Within +/-10% (-25 to +85°C) F1: Within +30/-80% (-25 to +85°C) F5: Within +22/-82% (-30 to +85°C) R1, R7: Within +/-15% (-55 to +125°C)	•The range Reference shown in the In case of a measured	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
9	Capacitance Temperature			2	-55±3 (for R7) -25±3 (for B1, F1) -30±3 (for F5)	No bias		
9	Characteristics			3	Reference Tempereture±2	INO bias		
				4	85±3 (for B1, F1, F5) 125±3 (for R7)			
				5	20±2			
		50% of	B1 : Within +10/-30%	- 6	-25±3 (for B1, R1, F1)	50% of the rated		
		the Rated	R1 : Within +15/-40%	7	20±2	voltage		
		Voltage	F1 : Within +30/–95%	8	85±3 (for B1, R1, F1)			
				Perform a then let sit	*Initial measurement for high dielectric constant type Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.			
10	Mechanical Strength	Bond Strength	Pull force : 3.0g min.	Mount the of Au-Sn (80/2	83 Method 2011 Condition D capacitor on a gold metallized a 20) and bond a 20μm (0.0008 ir erminal using an ultrasonic wed	nch) gold wire to the		
	3	Die Shear Strength	Die Shear force : 200g min.	Mount the	MIL-STD-883 Method 2019 Mount the capacitor on a gold metallized alumina s with Au-Sn (80/20). Apply the force parallel to the s			
		Appearance	No defects or abnormality					
	Vibration	Capacitance	Within the specified tolerance		uency from 10 to 55Hz then ref			
11	Resistance	D.F.	B1, R1, R7 : 0.035 max. F1, F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)	Apply this i	1 minute. Amplitude: 1.5 mm (0.06 inch) max. total Apply this motion for a period of 2 hours in each of perpendicular directions (total 6 hours).			



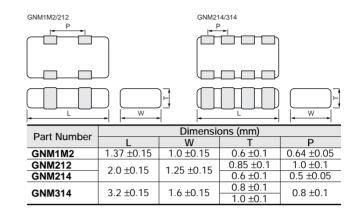


Continued from the preceding page

No.	Ite	em	Specifications	Test Method	
12	Temperature Cycle	Appearance Capacitance Change D.F.	No marked defect B1, R1, R7 : Within ±7.5% F1, F5 : Within ±20% B1, R1, R7 : 0.035 max. F1, F5 : 0.09 max. (for 16V) 0.125 max. (for 10V)	The capacitor should be set for 48±4 hours at room temperature after one hour heat of treatment at 150+0/then measure for the initial measurement. Fix the capar the supporting jig in the same manner and under the same conditions as (11) and conduct the five cycles according temperatures and time shown in the following table. Se 48±4 hours at room temperature, then measure.	acitor to came ng to the et it for
		I.R.	More than 10,000Ω • F	Step 1 2 3	4
		Dielectric Strength	No failure	Temp. (C) Temp. +0/-3 Temp. Temp. +3/-0 T	Room Temp. 2 to 3
		Appearance	No marked defect	Set the capacitor for 500±12 hours at 40±20℃, in 90 to	to 95%
		Capacitance Change	B1, R1, R7 : Within ±12.5% F1, F5 : Within ±30%	humidity. Take it out and set it for 48±4 hours at room temperatu measure.	ure, then
13	Humidity (Steady State)	D.F.	B1, R1, R7 : 0.05 max. F1, F5 : 0.125 max. (for 16V) 0.15 max. (for 10V)		
		I.R.	More than 1,000Ω • F		
		Dielectric Strength	No failure		
		Appearance	No marked defect		
		Capacitance Change	B1, R1, R7 : Within ±12.5% F1, F5 : Within +30/-40%	Apply the rated voltage for 500±12 hours at 40±2°C, in 95% humidity and set it for 48±4 hours at room temperature, then measure. The charge/discharge curre	
14	Humidity Load	D.F.	B1, R1, R7 : 0.05 max. F1, F5 : 0.125 max. (for 16V) 0.15 max. (for 10V)	less than 50mA. • Initial measurement for F1/F5	
		I.R.	More than 500Ω • F	Perform a heat treatment at 150+0/−10°C for one hour then let sit for 48±4 hours at room temperature. Perform	
		Dielectric Strength	No failure	initial measurement.	
		Appearance	No marked defect	A voltage treatment should be given to the capacitor, in v	
		Capacitance Change	B1, R1, R7 : Within ±12.5% F1, F5 : Within +30/-40%	DC voltage of 200% the rated voltage is applied for one has the maximum operating temperature ±3°C then it should for 48±4 hours at room temperature and the initial measurement.	l be set
15	High Temperature Load	D.F.	B1, R1, R7 : 0.05 max. F1, F5 : 0.125 max. (for 16V) 0.15 max. (for 10V)	should be conducted. Then apply the above mentioned voltage continuously for 1000±12 hours at the same temperature, remove it from bath, and set it for 48±4 hours at room temperature, ther	or n the
		I.R.	More than 1,000Ω • F	measure. The charge/discharge current is less than 50m.	
		Dielectric Strength	No failure		

Mounting for testing: The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No.11 to 15 are performed.

Chip Monolithic Ceramic Capacitors


Capacitor Arrays

■ Features

- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

■ Applications

General electronic equipment

Temperature Compensating Type

Part Number	GNM1M	GNM21	GNI	M31
LxW	1.37x1.0	2.0x1.25	3.2>	(1.6
тс	C0G (5C)	C0G (5C)	CC (5 6	
Rated Volt.	50 (1H)	50 (1H)	100 (2A)	50 (1H)
Capacitance (Capaci	tance part numbering code)	and T (mm) Dimension (T Din	nension part numbering code)	
10pF(100)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
11pF(110)			0.8(4)	0.8(4)
12pF(120)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
13pF(130)			0.8(4)	0.8(4)
15pF(150)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
16pF(160)			0.8(4)	0.8(4)
18pF(180)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
20pF(200)			0.8(4)	0.8(4)
22pF(220)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
24pF(240)			0.8(4)	0.8(4)
27pF(270)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
30pF(300)			0.8(4)	0.8(4)
33pF(330)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
36pF(360)			0.8(4)	0.8(4)
39pF(390)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
43pF(430)			0.8(4)	0.8(4)
47pF(470)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
51pF(510)			0.8(4)	0.8(4)
56pF(560)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
62pF(620)			0.8(4)	0.8(4)
68pF(680)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
75pF(750)			0.8(4)	0.8(4)
82pF(820)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
91pF(910)	·		0.8(4)	0.8(4)
100pF(101)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
110pF(111)	·		0.8(4)	0.8(4)
120pF(121)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
130pF(131)			0.8(4)	0.8(4)
150pF(151)	0.85(2)	0.6(4)	0.8(4)	0.8(4)
160pF(161)	. ,	.,	.,	0.8(4)
180pF(181)	0.85(2)	0.6(4)		0.8(4)

Part Number	GNM1M	GNM21	GNM31			
LxW	1.37x1.0	2.0x1.25	3.2x1.6			
тс	C0G (5C)	C0G (5C)	C0G (5C)			
Rated Volt.	50 (1H)	50 (1H)	100 (2A)	50 (1H)		
Capacitance (Capaci	tance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)			
200pF(201)				0.8(4)		
220pF(221)	0.85(2)	0.6(4)		0.8(4)		
240pF(241)				0.8(4)		
270pF(271)	0.85(2)	0.6(4)		0.8(4)		
300pF(301)				0.8(4)		
330pF(331)				0.8(4)		
360pF(361)				0.8(4)		

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM1M Series

Part Number	GNM1M								
LxW		1.37x1.00							
тс		5R (6)	X7R (R7)						
Rated Volt.	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)				
Capacitance (Ca	pacitance part numbering	code) and T (mm) Dimens	sion (T Dimension part nur	nbering code)					
1000pF(102)			0.6(2)						
10000pF(103)				0.6(2)					
22000pF(223)					0.6(2)				
47000pF(473)					0.6(2)				
0.10μF(104)	0.8(2)								
1.0μF(105)	0.6(2)	0.6(2)							

The part numbering code is shown in each (). The (2) code in T(mm) means number of elements (two).

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM21 Series

Part Number	GNM21							
L x W	2.0x1.25	1.37x1.00		2.0x	1.25			
тс	X5R (R6)	X5R (R6)	X5R (R6)	X7R (R7)				
Rated Volt.	16 (1C)	10 (1A)	10 (1A)	50 (1H)	25 (1E)	16 (1C)		
Capacitance (Ca	pacitance part numbe	ering code) and T (mn	n) Dimension (T Dimen	sion part numbering of	code)			
1000pF(102)				0.6(4)				
10000pF(103)					0.6(4)			
0.10μF(104)						0.8(4)		
1.0μF(105)	0.6(2)	0.6(2)						
2.2μF(225)			0.6(2)					

The part numbering code is shown in each (). The (2) code in T(mm) means number of elements (two). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM31 Series

Part Number		,		GN	M31	,			
LxW				3.2	x1.6				
тс	X5R (R6)	X5R X7R (R6) (R7)					Y5V (F5)		
Rated Volt.	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	16 (1C)	
Capacitance (Cap	acitance part	numbering code)	and T (mm) Dim	ension (T Dimer	sion part numbe	ering code)			
220pF(221)		0.8(4)							
270pF(271)		0.8(4)							
330pF(331)		0.8(4)							
390pF(391)		0.8(4)	0.8(4)						
470pF(471)		0.8(4)	0.8(4)						
560pF(561)		0.8(4)	0.8(4)						
680pF(681)		0.8(4)	0.8(4)						
820pF(821)		0.8(4)	0.8(4)						
1000pF(102)		0.8(4)	0.8(4)						
1200pF(122)		0.8(4)	0.8(4)						
1500pF(152)		0.8(4)	0.8(4)						
1800pF(182)		0.8(4)	0.8(4)						
2200pF(222)		0.8(4)	0.8(4)			0.8(4)			
2700pF(272)		0.8(4)	0.8(4)						
3300pF(332)		0.8(4)	0.8(4)			0.8(4)			
3900pF(392)		0.8(4)	0.8(4)						
4700pF(472)		0.8(4)	0.8(4)			0.8(4)			
5600pF(562)			0.8(4)						
6800pF(682)			0.8(4)						
8200pF(822)			0.8(4)						
10000pF(103)			0.8(4)						
12000pF(123)			0.8(4)						
15000pF(153)			0.8(4)						
18000pF(183)			,	0.8(4)					
22000pF(223)				, ,	0.8(4)		0.8(4)		
27000pF(273)					0.8(4)				
33000pF(333)					0.8(4)		0.8(4)		
39000pF(393)					0.8(4)		- 7(-)		
47000pF(473)					1.0(4)		0.8(4)		
68000pF(683)					1.0(4)			0.8(4)	
0.10μF(104)					1.0(4)			0.8(4)	
0.15μF(154)								0.8(4)	
1.0μF(105)	1.0(4)							3.5(4)	

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

			Specifi	cations				
No.	Ite	em	Temperature Compensating Type			Test Method		
			remperature Compensating Type	High Dielectric Type				
1	Operating Tempera Range	-	−55 to +125°C	B1, F1 : -25 to +85°C R1, R7 : -55 to +125°C F5 : -30 to +85°C		Temperature : 25°C 1, F1 : 20°C)		
2	Rated Vo	ltage	See the previous pages		may be ap When AC	voltage is defined as the ma plied continuously to the cap voltage is superimposed on is larger, should be maintain age.	pacitor. DC voltage, V ^{թ.թ} or V ^{o.թ} ,	
3	Appearance No defects or abnormalities				Visual insp	ection		
4	4 Dimension Within the specified dimensions				Using calip	pers		
5	Dielectric	: Strength	No defects or abnormalities		(temperatu (high dielectermination	should be observed when 30 are compensating type) or 25 ctric constant type) is applied as for 1 to 5 seconds, provide as than 50mA.	50% of the rated voltage d between the	
6	Insulation Resistant		More than 10,000MΩ or 500Ω • (Whichever is smaller)	F	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25°C and max. and within 2 minutes of charging.			
7	Capacita	nce	Within the specified tolerance			itance/Q/D.F. should be mea		
0	Q/		30pF min. : Q≧1000 30pF max. : Q≥400+20C	[B1, R1, R7] W.V.: 25V min.: 0.025 max. W.V.: 16V: 0.035 max.		and voltage shown in the tal	B1, R1, R7, F1, F5	
8	(D.F.)	on Factor	C. Naminal Canacitanas (aF)	[F1, F5]	Freque	ncy 1±0.1MHz	1±0.1kHz	
			C : Nominal Capacitance (pF)	W.V. : 25V min. : 0.05 max. W.V. : 16V : 0.07 max.	Voltage	0.5 to 5Vrms	1.0±0.2Vrms	
		No bias	Within the specified tolerance (Table A-1)	B1: Within±10% (-25 to +85°C) R1, R7: Withn±15% (-55 to +125°C) F1: Within +30/-80% (-25 to +85°C) F5: Within +22/-82% (-30 to +85°C)	each speci (1) Tempel The tempel tance meal temperatur should be coefficient	itance change should be measured after 5 min. at fied temperature stage. rature Compensating Type rature coefficient is determined using the capacisured in step 3 as a reference. When cycling the re sequentially from step1 through 5, the capacitance within the specified tolerance for the temperature and capacitance change as Table A.		
		50% of the Rated Voltage		B1 : Within +10/–30% R1 : Within +15/–40% F1 : Within +30/–95%	The capacitance drift is calculated by dividing the different between the maximum and minimum measured values in steps 1, 3 and 5 by the cap value in step 3.			
					The ranges 25°C value should be	electric Constant Type s of capacitance change con e over the temperature range within the specified ranges.	es shown in the table	
9	Capacitance				Step 1	Temperature (°C) Reference Temperature±2	Applying Voltage (V)	
9	Temperature Characteristics				2	-55±3 (for R1, R7)/ -25±3 (for B1, F1)/ -30±3 (for F5)	No bias	
				/	3	Reference Temperature±2		
		Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.)		4	125±3 (for R1, R7)/ 85±3 (for B1, F1, F5)		
				/	5	20±2 -55±3 (for R1)/		
					6	-25±3 (for B1, F1)	50% of the Rated	
					7	20±2	Voltage	
					8	125±3 (for R1)/ 85±3 (for B1, F1)		
					Perform a then set fo	asurement for high dielectric heat treatment at 150 +0/–1 r 48±4 hours at room tempe e initial measurement.	0°C for one hour and	

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

Continued from the preceding page.

			Specifi	cations					
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	-	Test Method			
					Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock				
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur		GNM 4 GNM 2				
					Type GNM1M	a b 0.5 —	0.32	0.32	
						0.4 1.6	0.25	0.5	
				GNM31	0.8 2.5 Fig. 1	0.4	0.8 (in mm)		
		Appearance	No defects or abnormalities	Solder the capacitor to			•		
		Capacitance	Within the specified tolerance		same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).				
11	Vibration Resistance	Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	[B1, R1, R7] W.V.: 25V min.: 0.025 max. W.V.: 16V: 0.035 max. [F1, F5] W.V.: 25V min.: 0.05 max. W.V.: 16V: 0.07 max.					
			No cracking or marking defects	Solder the capacitor on					
					in Fig. 2 using a eutect direction shown in Fig. done either with an iror be conducted with care of defects such as heat	3 for 5±1 sec. The or using the refless to that the solder	he soldering low method	g should be and should	
				20 4 50 Pressurizing	•GNM□□4	•GNM	□□2		
12	Deflection	n	R2	speed : 1.0mm/sec.	5.0 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.0 100		
				Fig. 3	GNM21 2.0	a b ±0.05 0.5±0.05 ±0.05 0.7±0.05 ±0.05 0.8±0.05	0.3±0.05	t=0.8mm d 0.32±0.05 0.2±0.05 0.4±0.05 (in mm)	
					T	Fig. 2			
13	Solderability of Termination		75% of the terminations are to be continuously.	pe soldered evenly and	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.				

Continued from the preceding page.

7	Continued fr	om the prec	euing page.						
No.	lte	em	Specifi	cations		Tes	st Metho	d	
•0.	i iic	2111	Temperature Compensating Type	High Dielectric Type		10.	ot Wictio	u	
	Resistand Soldering		The measured and observed ch specifications in the following ta	•					
		Appearance	No marking defects		Preheat the ca	apacitor at 120	to 150°C	C for 1 minute. I	mmerse
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, R1, R7 : Within ±7.5% F1, F5 : Within ±20%	the capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hou (temperature compensating type) or 48±4 hours (high diel constant type), then measure. • Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/–10°C for one hour and then let sit for 48±4 hours at room temperature.				C for 2 hours
14		Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	[B1, R1, R7] W.V.: 25V min.: 0.025 max. W.V.: 16V: 0.035 max. [F1, F5] W.V.: 25V min.: 0.05 max. W.V.: 16V: 0.07 max.					e
		I.R.	More than $10,000 \mathrm{M}\Omega$ or 500Ω •	F (Whichever is smaller)	Perform the initial measurement.				
		Dielectric Strength	No failure						
	Tempera Cycle	ture	The measured and observed ch specifications in the following ta	under the sam	e conditions a	s (10). P	in the same ma	cycles	
		Appearance	No marking defects		_			listed in the follature compensa	•
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, R1, R7 : Within ±7.5% F1, F5 : Within ±20%		(high dielectri		nt type) at room	
				[B1, R1, R7]	Step	1	2	3	4
15		Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C	W.V.: 25V min.: 0.025 max. W.V.: 16V: 0.035 max. [F1, F5]	Temp. (°C)	Min. Operating Temp. +0/–3	Room Temp.	Max. Operating Temp. +3/–0	Room Temp.
			C:Nominal Capacitance (pF)	W.V.: 25V min.: 0.05 max. W.V.: 16V: 0.07 max.	Time (min.)	30±3	2 to 3	30±3	2 to 3
		I.R.	More than $10,000 \mathrm{M}\Omega$ or 500Ω •	F (Whichever is smaller)		•		ic constant type I0°C for one ho	
		Dielectric Strength	No failure		then let sit for Perform the in	48±4 hours at	room ter		a. aa
	Humidity State	Steady	The measured and observed ch specifications in the following ta						
		Appearance	No marking defects						
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, R1, R7 : Within ±12.5% F1, F5 : Within ±30%	Let the capacitor sit at 40±2°C and 90 to 95% humidity 500±12 hours. Remove and let sit for 24±2 hours (temperature compet type) or 48±4 hours (high dielectric constant type) at root temperature, then measure.				lity for
16		Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[B1, R1, R7] W.V.: 25V min.: 0.05 max. W.V.: 16V: 0.05 max. [F1, F5] W.V.: 25V min.: 0.075 max. W.V.: 16V: 0.1 max.					pensating
		I.R.	More than 1,000MΩ or 50Ω • F	(Whichever is smaller)					
		Dielectric Strength	No failure						
	Humidity	Load	The measured and observed ch specifications in the following ta						
		Appearance	No marking defects						
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, R1, R7 : Within ±12.5% F1, F5 : Within ±30%	Apply the rate	d voltage at 40	±2°C an	id 90 to 95% hu	ımidity for
17		Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	[B1, R1, R7] W.V.: 25V min.: 0.05 max. W.V.: 16V: 0.05 max. [F1, F5] W.V.: 25V min.: 0.075 max.	type) or 48±4 temperature, t	let sit for 24±2 hours (temperature compens hours (high dielectric constant type) at roor			
		1.0	Mary than 500MO 250 = 22	W.V. : 16V : 0.1 max.					
		I.R.	More than 500MΩ or 25Ω • F (V	vnicnever is smaller)	_				
		Dielectric Strength	No failure						

Continued from the preceding page.

	3									
NI-	14.0		Specifi	cations	Total Madha d					
No.	ILE	em	Temperature Compensating Type	High Dielectric Type	Test Method					
	High Temperature Load		The measured and observed characteristics should satisfy the specifications in the following table.							
		Appearance	No marking defects		Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours					
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, R1, R7 : Within ±12.5% F1, F5 : Within ±30%	(temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.					
18		Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[B1, R1, R7] W.V.: 25V min.: 0.04 max. W.V.: 16V: 0.05 max. [F1, F5] W.V.: 25V min.: 0.075 max. W.V.: 16V: 0.1 max.	The charge/discharge current is less than 50mA. • Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement.					
		I.R.	More than 1,000M Ω or 50 Ω • F	(Whichever is smaller)						

Table A

(1)

		Capacitance Change from 25℃ (%)						
Char.	Nominal Values (ppm/°C) *1	− 55℃		−30°C		−10 ℃		
	(ρρπ, ε) · τ	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

^{*1 :} Nominal values denote the temperature coefficient within a range of 25 to 125°C.

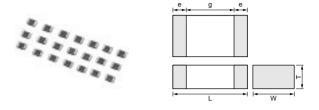
(2)

_	2)								
		Newsland Webser		Capacitance Change from 20℃ (%)					
	Char.	Nominal Values (ppm/°C) *2	−55 °C		-25°C		−10°C		
			Max.	Min.	Max.	Min.	Max.	Min.	
	2C	0±60	0.82	-0.45	0.49	-0.27	0.33	-0.18	

^{*2 :} Nominal values denote the temperature coefficient within a range of 20 to 125°C.

Chip Monolithic Ceramic Capacitors

for Ultrasonic Sensors


■ Features

- 1. Proper to compensate for ultrasonic sensor
- 2. Small chip size and high cap. value

■ Applications

Ultrasonic sensor

(Back sonar, Corner sonar and etc.)

Part Number	Dimensions (mm)				
Part Number	L	W	T	е	g min.
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM2199E2A102KD42	ZLM (Murata)	100	1000 ±10%	2.0	1.25	0.85
GRM2199E2A152KD42	ZLM (Murata)	100	1500 ±10%	2.0	1.25	0.85

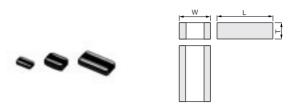
No.	Ite	em	Specifications		Test Me	thod	
1	Operating Temperat	,	−25 to +85°C	Reference Temperature: 20°C			
2	2 Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltagemay be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, \whichever is larger, should be maintained within the age range.		ge, V ^{p.p} or V ^{o.p} ,	
3	Appearar	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	ns	Within the specified dimensions	Using calipers			
5	Dielectric	: Strength	No defects or abnormalities	No failure should be is applied between ed the charge/disch	the termination	ns for 1 to 5 se	econds, provid-
6	Insulation (I.R.)	Resistance	More than 10,000MΩ	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20°C and 75%RH max and within 2 minutes of charging.			
7	Capacita	nce	Within the specified tolerance	The capacitance/D.	E should be a	neasured at 2	 ∩°C with
8	Dissipatio (D.F.)	n Factor	0.01 max.	1±0.1kHz in freque			
9	Capacitance		Within −4,700 $^{+1.000}_{-2.500}$ ppm/°C (at −25 to +20°C) Within −4,700 $^{+500}_{-1.000}$ ppm/°C (at +20 to +85°C)	The temperature coefficient is determined using the capacitance measured in step 1 as a reference. When cycling the temperature sequentially from step 1 to 5, the capacitance should be within the specified tolerar the temperature coefficient. The capacitance change should be measured after 5 mine each specified temperature stage. Step Temperature (°C) 1 20±2 2 -25±3 3 20±2 4 85±3 5 20±2		n step 1 through d tolerance for after 5 min. at	
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Type a b c GRM21 1.2 4.0 1.6		or using the are so that the heat shock.	
		Appearance	No defects or abnormalities	Solder the capacito	r to the test jig	(glass epoxy	board) in the
		Capacitance	Within the specified tolerance	same manner and t	under the same	e conditions a	s (10).
11	Vibration Resistance	D.F.	0.01 max.	The capacitor shou having a total ampli uniformly between the frequency range, for be traversed in applied for a period ular directions (total	tude of 1.5mm the approximation 10 to 55Hz roximately 1 m of 2 hours in 6	the frequence te limits of 10 and return to ninute. This m	cy being varied and 55Hz. The 10Hz, should otion should be

Continued on the following page. $\boxed{\ \ \ }$

_					
NΙ	Continued	from	the	preceding	page

No.	Ite	em	Specifications	Test Method		
	2 Deflection		No cracking or marking defects should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
12			Type a b c GRM21 1.2 4.0 1.65 (in mm)	20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1 Capacitance meter 45 (in mm)		
13	Solderabi Terminati	•	75% of the terminations are to be soldered evenly and continuously	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2 \pm 0.5 seconds at 230 \pm 5°C.		
		Appearance	No defects or abnormalities			
	Resistance to Soldering Heat	Capacitance Change	Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours, then measure.		
14		D.F.	0.01 max.			
		I.R.	More than 10,000MΩ			
		Dielectric Strength	No failure			
		Appearance	No defects or abnormalities	Fix the capacitor to the supporting jig in the same manner and		
		Capacitance Change	Within ±7.5%	under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room tem-		
15	Temperature Cycle	D.F.	0.01 max.	perature, then measure.		
		I.R.	More than 10,000M Ω	Step 1 2 3 4 Temp. (°C) $-25^{+0.0}_{-0.0}$ Room Temp. $85^{+0.0}_{-0.0}$ Room Temp.		
		Dielectric Strength	No failure	Time (min.) 30±3 2 to 3 30±3 2 to 3		
		Appearance	No defects or abnormalities			
	Humidity,	Capacitance Change	Within ±12.5%	Sit the capacitor at 40±2°C and 90 to 95% humidity for 500±12 hours.		
16	Steady State	D.F.	0.02 max.	Remove and let sit for 24±2 hours at room temperature, then		
	State	I.R.	More than 1,000M Ω	measure.		
		Dielectric Strength	No failure			
		Appearance	No defects or abnormalities			
17	Humidity Load	Capacitance Change	Within ±12.5%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room temporature, then measure. The charge/discharge current is less		
	Loau	D.F.	0.02 max.	 perature, then measure. The charge/discharge current is less than 50mA. 		
		I.R.	More than $500M\Omega$			
		Appearance	No defects or abnormalities			
18	High Temperature	Capacitance Change	Within ±12.5%	Apply 200% of the rated voltage for 1,000±12 hours at 85±3°C. Let sit for 24±2 hours at room temperature, then measure.		
	Load	D.F.	0.02 max.	The charge/discharge current is less than 50mA.		
		I.R. More than 1,000MΩ		1		

Chip Monolithic Ceramic Capacitors


Low ESL

■ Features

- Low ESL, good for noise reduction for high frequency
- 2. Small, high cap

■ Applications

- 1. High speed micro processor
- 2. High frequency digital equipment

Part Number		Dimensions (mm)	
Fait Number	L	W	Т
LLL185	1.6 ±0.1	0.8 ±0.1	0.6 max.
LLL216	20+01	1.25 ±0.1	0.6 ±0.1
LLL219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1
LLL317	3.2 ±0.15	1.6 ±0.15	0.7 ±0.1
LLL31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1

LLL18 Series

Part Number	LLL18					
LxW	1.6x0.8					
TC	X7R (R7)					
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)		
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)			
2200pF(222)	0.5 (5)					
3300pF(332)	0.5 (5)					
4700pF(472)	0.5 (5)					
6800pF(682)		0.5(5)				
10000pF(103)		0.5(5)				
15000pF(153)		0.5(5)				
22000pF(223)		0.5(5)				
33000pF(333)			0.5 (5)			
47000pF(473)			0.5(5)			
68000pF(683)			0.5(5)			
0.10μF(104)				0.5(5)		

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

LLL21 Series

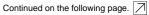
Part Number	LLL21						
LxW		2.0x	1.25				
TC		X7R (R7)					
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)			
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)				
4700pF(472)	0.6(6)						
6800pF(682)	0.6(6)						
10000pF(103)	0.6(6)						
15000pF(153)	0.6(6)						
22000pF(223)	0.6(6)	0.6(6)					
33000pF(333)	0.85(9)	0.6(6)	0.6(6)				
47000pF(473)		0.6(6)	0.6(6)				

Part Number	LLL21					
LxW		2.0x	1.25			
тс	X7R (R7)					
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)		
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimer	sion part numbering code)	,		
68000pF(683)		0.6(6)	0.6(6)			
0.10μF(104)		0.6(6)	0.6(6)			
0.15μF(154)		0.85(9)	0.6(6)			
0.22μF(224)			0.85(9)	0.6(6)		
0.33μF(334)				0.6(6)		
0.47μF(474)				0.85 (9)		

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

LLL31 Series


Part Number	LLL31						
LxW	3.2x1.6						
тс			7R ?7)				
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)			
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dime	nsion part numbering code)				
10000pF(103)	0.7 (7)						
15000pF(153)	0.7(7)						
22000pF(223)	0.7(7)						
33000pF(333)	0.7(7)						
47000pF(473)	0.7(7)						
68000pF(683)	0.7(7)						
0.10μF(104)	1.15(M)	0.7(7)	0.7(7)				
0.15μF(154)	1.15(M)	0.7(7)	0.7(7)				
0.22μF(224)		1.15(M)	0.7(7)				
0.33μF(334)		1.15(M)	0.7(7)				
0.47μF(474)		1.15(M)	0.7(7)				
0.68μF(684)			1.15(M)	0.7(7)			
1.0μF(105)			1.15(M)	0.7(7)			
1.5μF(155)				1.15(M)			
2.2μF(225)				1.15(M)			

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Ite	em	Specifications	Test Method		
1	Operating Tempera Range		B1: -25 to +85°C R7, R1: -55 to +125°C F1: -25 to +85°C F5: -30 to +85°C	Reference Temperature : 25°C (B1, R1, F1 : 20°C)		
2	Rated Vo	ltage	See the previous pages	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} or V ^{O-p} , whichever is larger, should be maintained within the rated voltage range.		
3	Appearar	nce	No defects or abnormalities	Visual inspection		
4	Dimensio	ns	Within the specified dimension	Using calipers		
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.		
6	Insulation (I.R.)	Resistance	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at standard temperature and 75%RH max. and within 2 minutes of charging.		
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at standard		
	Dissipatio	n Factor	Char. 25V min. 16V	temperature at the frequency and voltage shown in the table.		
8	(D.F.)	iii Factoi	B1, R1, R7 0.025 max. 0.035 max. —	Frequency 1±0.1kHz Voltage 1±0.2Vrms		
9	Capacitance Temperature Characteristics	No bias	R7: Within ±15% (–55 to +125°C) F5: Within +22/–82% (–30 to +85°C) B1: Within ±10% (–25 to +85°C) R1: Within ±15% (–55 to +125°C) F1: Within +30/–80% (–25° to +85°C)	each specified temp. stage. The ranges of capacitance change compared with the reference temperature value over the temperature ranges shown in the table should be within the specified ranges.* In case of applying voltage, the capacitance change should be measured after 1 more min. with applying voltage in equilibration of each temp. stage. Step Temperature (°C) Applying Voltage (V) 1 Reference Tempereture ±2 -55±3 (for R1, R7)/ 2 -25±3 (for B1, F1) -30±3 (for F5) No bias Reference Tempereture ±2		
		50% of the Rated Voltage	B1: Within +10/–30% R1: Within +15/–40% F1: Within +30/–95%	4 85±3 (for B1, F1, F5) 5 20±2 6 -55±3 (for R1)/ -25±3 (for B1, F1) 7 20±2 8 125±3 (for R1)/ 85±3 (for R1)/ 85±3 (for B1, F1) *Initial measurement for high dielectric constant type Perform a heat treatment at 150 +0/-10°C for one hour and then set for 48±4 hours at room temperature. Perform the initial measurement.		
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N* force in the direction of the arrow. *5N: LLL18 The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Solder resist Baked electrode or copper foil Type a b c LLL18 0.3 1.2 2.0 LLL21 0.6 1.6 2.4 LLL31 1.0 3.0 3.7 (in mm)		

muRata

	Continued	from the	preceding	page
	Continuou		proceding	pago

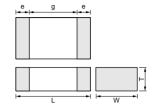
No.	Continued fr		Specifications	Test Method			
vO.	Ite		·				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10).			
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion			
11	Vibration			having a total amplitude of 1.5mm, the frequency being varied			
	Resistance		Char. 25V min. 16V	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should			
		D.F.	B1, R1, R7 0.025 max. 0.035 max.	be traversed in approximately 1 minute.			
			F1, F5 0.05 max.	This motion should be applied for a period of 2 hours in each of			
				3 mutually perpendicular directions (total of 6 hours).			
			No crack or marked defect should occur	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3.			
				The soldering should be done either with an iron or using the			
				reflow method and should be conducted with care so that the			
			<mark>→ b</mark>	soldering is uniform and free of defects such as heat shock.			
				20 , 50 Pressurizing			
				speed: 1.0mm/sec.			
2	Deflection	n		R230			
			100 t : 1.6mm				
			100 1 000	Flexure : ≦1			
			Type	· · · · · · · · · · · · · · · · · · ·			
			Type a b c LLL18 0.3 1.2 2.0	Capacitance meter			
			LLL21 0.6 1.6 2.4	. 45 45 (in mm)			
			LLL31 1.0 3.0 3.7				
			(in mm) Fig. 2	Fig. 3			
				Immerse the capacitor in a solution of ethanol (JIS-K-8101) and			
3	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat a 80 to 120°C for 10 to 30 seconds. After preheating, immerse in			
	Terrimati	OII	and continuously.	eutectic solder solution for 2±0.5 seconds at 230±5°C.			
		Appearance	No defects or abnormalities				
		Capacitance	B1, R1, R7 : Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse			
		Change	F1, F5 : Within ±20%	the capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 48±4 hours,			
1 4	Resistance		Char. 25V min. 16V	then measure.			
14	to Soldering Heat	D.F.	B1, R1, R7 0.025 max. 0.035 max.				
			F1, F5 0.05 max.	• Initial measurement. Perform a heat treatment at 150 ⁺⁰ / ₋₁₀ °C for one hour and then			
		I.R.	More than $10,000\text{M}\Omega$ or $500\Omega \bullet \text{F}$ (Whichever is smaller)	let sit for 48±4 hours at room temperature. Perform the initial			
		Dielectric Strength	No failure	measurement.			
		Appearance	No defects or abnormalities	Fix the capacitor to the supporting jig in the same manner and			
		Capacitance	B1, R1, R7 : Within ±7.5%	under the same conditions as (10).			
		Change	F1, F5 : Within ±20%	Perform the five cycles according to the four heat treatments			
			Char. 25V min. 16V	listed in the following table. Let sit for 48±4 hours at room temperature, then measure.			
		D.F.	B1, R1, R7 0.025 max. 0.035 max.	Step 1 2 3 4			
15	Temperature Cycle		F1, F5 0.05 max.	Temp. (°C) Min. Operating Room Temp. $\stackrel{+\circ}{\sim}$ Temp. Temp.			
	Julio	I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	Time (min.) 30±3 2 to 3 30±3 2 to 3			
				• Initial measurement.			
		Dielectric	No failure	• Initial measurement. Perform a heat treatment at 150± $^{\circ}_{10}$ °C for one hour and then			
		Strength		let sit for 48±4 hours at room temperature. Perform the initial			
				measurement.			
		Appearance	No defects or abnormalities				
	Humidity,	Capacitance Change	B1, R1, R7 : Within ±12.5% F1, F5 : Within ±30%	Let the capacitor sit at 40±2°C and 90 to 95% humidity for			
16	Steady		Char. 25V min. 16V	500±12 hours.			
	State	D.F.	B1, R1, R7 0.05 max. 0.05 max.	Remove and let sit for 48±4 hours at room temperature, then measure.			
			F1, F5 0.075 max. —				
		I.R.	More than 1,000MΩ or 50Ω • F (Whichever is smaller)				
			·	1			

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method	
		Appearance	No defects or abnormalities		
		Capacitance Change	B1, R1, R7 : Within ±12.5% F1, F5 : Within ±30%		
17	Humidity Load	D.F.	Char. 25V min. 16V B1, R1, R7 0.05 max. 0.05 max. F1, F5 0.075 max. —	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 48±4 hours at room temperature, then measure. The charge/discharge current is less than 50mA.	
		I.R.	More than 500MΩ or 25Ω • F (Whichever is smaller)		
		Dielectric Strength	No failure		
		Appearance	No defects or abnormalities.	Apply 200% of the rated voltage for 1,000±12 hours at	
		Capacitance Change	B1, R1, R7 : Within ±12.5% F1, F5 : Within ±30%	maximum operating temperature ±3°C. Let sit for 48±4 hours at room temperature, then measure.	
18	High Temperature Load	D.F.	Char. 25V min. 16V B1, R1, R7 0.05 max. 0.05 max. F1, F5 0.075 max. —	The charge/discharge current is less than 50mA. Initial measurement. Apply 200% of the rated DC voltage for one hour at the	
		I.R.	More than 1,000MΩ or 50Ω • F (Whichever is smaller)	maximum operating temperature ±3°C.	
		Dielectric Strength	No failure	Remove and let sit for 48±4 hours at room temperature. Perform initial measurement.	

Chip Monolithic Ceramic Capacitors

High Frequency for Flow/Reflow Soldering

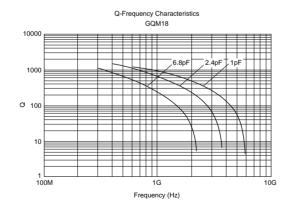

■ Features

- 1. HiQ and low ESR at VHF, UHF, Microwave
- Feature improvement, low power consumption for mobile telecommunication. (Base station, terminal, etc.)

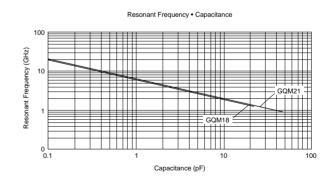
■ Applications

High frequency circuit (Mobile telecommunication, etc.)

Part Number		Dir	nensions (ı	mm)	
Part Number	L	W	T	е	g min.
GQM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5
GQM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7


Part Number	GQI	M18	GQM	21
LxW	1.60x	(0.80	2.00x ²	1.25
тс	C0 (5 6	COG (5C) COG (5C)		3
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)	
0.50pF(R50)	0.80(8)		0.85(9)	
0.75pF(R75)	0.80(8)		0.85(9)	
1.0pF(1R0)	0.80(8)		0.85(9)	
1.1pF(1R1)	0.80(8)		0.85(9)	
1.2pF(1R2)	0.80(8)		0.85(9)	
1.3pF(1R3)	0.80(8)		0.85(9)	
1.5pF(1R5)	0.80(8)		0.85(9)	
1.6pF(1R6)	0.80(8)		0.85(9)	
1.8pF(1R8)	0.80(8)		0.85(9)	
2.0pF(2R0)	0.80(8)		0.85(9)	
2.2pF(2R2)	0.80(8)		0.85(9)	
2.4pF(2R4)	0.80(8)		0.85(9)	
2.7pF(2R7)	0.80(8)		0.85(9)	
3.0pF(3R0)	0.80(8)		0.85(9)	
3.3pF(3R3)	0.80(8)		0.85(9)	
3.6pF(3R6)	0.80(8)		0.85(9)	
3.9pF(3R9)	0.80(8)		0.85(9)	
4.0pF(4R0)	0.80(8)		0.85(9)	
4.3pF(4R3)	0.80(8)		0.85(9)	
4.7pF(4R7)	0.80(8)		0.85(9)	
5.0pF(5R0)	0.80(8)		0.85(9)	
5.1pF(5R1)	0.80(8)		0.85(9)	
5.6pF(5R6)	0.80(8)		0.85(9)	
6.0pF(6R0)	0.80(8)		0.85(9)	
6.2pF(6R2)	0.80(8)		0.85(9)	
6.8pF(6R8)	0.80(8)		0.85(9)	
7.0pF(7R0)		0.80(8)	0.85(9)	
7.5pF(7R5)		0.80(8)	0.85(9)	
8.0pF(8R0)		0.80(8)	0.85(9)	
8.2pF(8R2)		0.80(8)	0.85(9)	
9.0pF(9R0)		0.80(8)	0.85(9)	
9.1pF(9R1)		0.80(8)	0.85(9)	
10pF(100)		0.80(8)	0.85(9)	

Part Number	GQN	118	GQ	M21	
LxW	1.60x0.80 2.0)x1.25		
тс	C0 (50	G E)	C0G (5C)		
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)	
Capacitance (Capacita	ince part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)		
11pF(110)		0.80 (8)	0.85(9)		
12pF(120)		0.80 (8)	0.85(9)		
13pF(130)		0.80(8)	0.85(9)		
15pF(150)		0.80(8)	0.85(9)		
16pF(160)		0.80(8)	0.85(9)		
18pF(180)		0.80(8)	0.85(9)		
20pF(200)		0.80 (8)		0.85 (9)	
22pF(220)		0.80(8)		0.85 (9)	
24pF(240)		0.80(8)		0.85(9)	
27pF(270)		0.80 (8)		0.85 (9)	
30pF(300)		0.80(8)		0.85 (9)	
33pF(330)		0.80(8)		0.85 (9)	
36pF(360)		0.80(8)		0.85 (9)	
39pF(390)		0.80(8)		0.85 (9)	
43pF(430)		0.80(8)		0.85(9)	
47pF(470)		0.80(8)		0.85(9)	
51pF(510)		0.80(8)	0.85(9)	0.85(9)	
56pF(560)		0.80(8)	0.85(9)	0.85(9)	
62pF(620)		0.80(8)	0.85(9)	0.85(9)	
68pF(680)		0.80(8)	0.85(9)	0.85(9)	
75pF(750)		0.80(8)	0.85(9)	0.85(9)	
82pF(820)		0.80(8)	0.85(9)	0.85(9)	
91pF(910)		0.80(8)	0.85(9)	0.85(9)	
100pF(101)		0.80(8)		0.85(9)	


The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

■ Q-Frequency Characteristics

■ Resonant Frequency-Capacitance

No.	Ite	em	Specifications	Test Method			
1	Operating Temperati		-55 to 125°C	Reference Temperature : 25°C (2C, 3C, 4C : 20°C)			
2	2 Rated Voltage		See the previous page	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated voltage range.			ge, V ^{p.p} or V ^{o.p} ,
3	Appearance No defects or abnormalities		Visual inspection				
4	Dimensio	n	Within the specified dimensions	Using calipers			
5	Dielectric	Strength	No defects or abnormalities	No failure should be is applied between to provided the charge	the terminatio	ns for 1 to 5 se	econds,
6	Insulation	Resistance	More than 10,000MΩ (Whichever is smaller)	The insulation resis voltage not exceedi max. and within 2 m	ng the rated v	oltage at 25℃	
7	Capacita	nce	Within the specified tolerance	The capacitance/Q frequency and volta			at the
8	Q		30pF min. : Q≥1400 30pF max. : Q≥800+20C	Frequency	ge snown in t	1±0.1MHz	
			C : Nominal Capacitance (pF)	Voltage		0.5 to 5Vrm	S
	Canacitance		Within the specified tolerance (Table A)	The temperature coefficient is determined using the cap measured in step 3 as a reference.		the capacitance	
		Temperature Coefficient	Within the specified tolerance (Table A)	When cycling the temperature sequentially from step 1 through 5 the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as in Table A.			
9	Capacitance Temperature Characteristics	perature		The capacitance dri between the maxim steps 1, 3 and 5 by Step 1 2 3 4 5	um and minim the capacitan T Ref	num measured	values in the ep 3.
		<u> </u>	No removal of the terminations or other defect should occur	Solder the capacitor	to the test iia (glass epoxy bo	pard) shown in
10		dhesive Strength		Fig. 1 using a eutect with the test jig for 10 The soldering should reflow method and s soldering is uniform Type GQM18	ic solder. Ther 0±1 sec. d be done eith hould be cond	n apply 10N* fo er with an iron lucted with care	or using the
			Solder resist	GQM21	1.2	4.0	1.65
	Solder resist Baked electrode or copper foil			Fig.	1	(in mm)	
		Appearance	No defects or abnormalities	Solder the capacitor			
		Capacitance	Within the specified tolerance	same manner and u			
11	Vibration Resistance	bration 30pF min : Q≥1400		 The capacitor shoul having a total ampli uniformly between t frequency range, from be traversed in appli This motion should 	tude of 1.5mm he approxima om 10 to 55Hz roximately 1 n be applied for	n, the frequence te limits of 10 a and return to ninute. a period of 2 l	y being varied and 55Hz. The 10Hz, should nours in each of
				3 mutually perpendicular directions (total of 6 hours).			

Continued from the preceding page.

Contin	Continued from the preceding page.										
No.	Iter	m	Specifications	Test Method							
12 Defle	2 Deflection		No crack or marked defect should occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize Capacitance meter 45 Fig. 3							
13	derabili minatio	•	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5℃.							
	30nF may . 0>000 . 200			Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.							
15 Temper Cycle	perature	Appearance Capacitance Change Q I.R. Dielectric Strength	The measured and observed characteristics should satisfy the specifications in the following table. No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pF min.: Q≥1400 30pF max.: Q≥800+20C C: Nominal Capacitance (pF) More than 10,000MΩ	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure. Step 1 2 3 4 Temp. (°C) Min. Operating Room Temp. +0/-3 Temp. Max. Operating Room Temp. +0/-3 Temp. Temp. Temp. Temp. 30±3 2 to 3							
16 Stead	Strength The measured and observed characteristics should satisfy the specifications in the following table. Appearance Capacitance Change Within ±5% or ±0.5pF (Whichever is larger) 30pF min.: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF max.: Q≥200+10C C: Nominal Capacitance (pF) I.R. Dielectric Strength No failure		specifications in the following table. No marking defects Within ±5% or ±0.5pF (Whichever is larger) 30pF min.: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF max.: Q≥200+10C C: Nominal Capacitance (pF) More than 1,000MΩ	Let the capacitor sit at $40\pm2^{\circ}$ C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure.							

muRata

Continued from the preceding page.

Continued from the preceding page.						
No.			Specifications	Test Method		
			The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for		
17	Humidity Load	Q	30pF min. : Q≥200 30pF max. : Q≥100+10C/3	500±12 hours. Remove and let sit for 24±2 hours at room temperature then measure. The charge/discharge current is less than 50mA.		
			C : Nominal Capacitance (pF)			
		I.R.	More than $500M\Omega$			
		Dielectric Strength	No failure			
			The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the		
18	High Temperature Load	Q	30pF min. : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF max. : Q≥200+10C	maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.		
			C : Nominal Capacitance (pF)			
		I.R.	More than 1,000M Ω			
		Dielectric Strength	No failure			

Table A

(1)

	Nominal Values (ppm/°C) *1		Capacitance Change from 25°C (%)						
Char.		− 55℃		-30℃		−10°C			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		

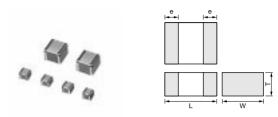
^{*1 :} Nominal values denote the temperature coefficient within a range of 25 to 125°C.

(2)

	,								
		Nominal Values (ppm/°c) *2	Capacitance Change from 20℃ (%)						
	Char.		−55℃		-25°C		−10 °C		
			Max.	Min.	Max.	Min.	Max.	Min.	
	2C	0±60	0.82	-0.45	0.49	-0.27	0.33	-0.18	
	3C	0±120	0.37	-0.90	0.82	-0.54	0.55	-0.36	
	4C	0+250	0.56	-0.88	1 54	-1.13	1.02	-0.75	

^{*2 :} Nominal values denote the temperature coefficient within a range of 20 to 125°C.

Chip Monolithic Ceramic Capacitors



High-Q & High Power Type

SMD Type

■ Features (ERF Series)

- 1. The dielectric is composed of low dielectric loss ceramic. This series is perfectly suited to high frequency applications. (VHS-microwave band)
- 2. The series is ultraminiature, yet has a high power capacity. This is the best capacitor available for transmitter and amplifier circuits such as those in broadcasting equipment and mobile base stations.
- 3. ERF1D type is designed for both flow and reflow soldering and ERF22 type is designed for reflow soldering.

Part Number	Dimensions (mm)						
Part Number	L	W	T	е			
ERF1DM	1.4 ^{+0.6} _{-0.4}	1.4 ^{+0.6} _{-0.4}	1.15 ^{+0.50} - 0.35	0.25 +0.25 -0.15			
ERF22X	2.8 ^{+0.6} _{-0.4}	2.8 ^{+0.6} _{-0.4}	2.3 ^{+0.5} _{-0.3}	0.4 + 0.4 - 0.3			

■ Applications

High frequency and high power circuits

Part Number	ERF1D		ERF22					
LxW	1.40x1.40			2.80x2.80				
тс	C0G (5C)	C0G (5C)						
Rated Volt.	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)		
Capacitance (Ca	pacitance part numbe	ering code) and T (mn	n) Dimension (T Dimen	sion part numbering o	ode)			
0.50pF(R50)	1.15 (M)	2.30(X)						
0.6pF(R60)	1.15 (M)	2.30(X)						
0.7pF(R70)	1.15 (M)	2.30(X)						
0.75pF(R75)	1.15 (M)	2.30(X)						
0.8pF(R80)	1.15(M)	2.30(X)						
0.9pF(R90)	1.15(M)	2.30(X)						
1.0pF(1R0)	1.15 (M)	2.30(X)						
1.1pF(1R1)	1.15 (M)	2.30(X)						
1.2pF(1R2)	1.15 (M)	2.30(X)						
1.3pF(1R3)	1.15(M)	2.30(X)						
1.4pF(1R4)	1.15(M)	2.30(X)						
1.5pF(1R5)	1.15 (M)	2.30(X)						
1.6pF(1R6)	1.15 (M)	2.30(X)						
1.7pF(1R7)	1.15(M)	2.30(X)						
1.8pF(1R8)	1.15(M)	2.30(X)						
1.9pF(1R9)	1.15(M)	2.30(X)						
2.0pF(2R0)	1.15(M)	2.30(X)						
2.1pF(2R1)	1.15(M)	2.30(X)						
2.2pF(2R2)	1.15 (M)	2.30(X)						
2.4pF(2R4)	1.15 (M)	2.30(X)						
2.7pF(2R7)	1.15(M)	2.30(X)						
3.0pF(3R0)	1.15(M)	2.30(X)						
3.3pF(3R3)	1.15(M)	2.30(X)						
3.6pF(3R6)	1.15(M)	2.30(X)						
3.9pF(3R9)	1.15 (M)	2.30(X)						
4.0pF(4R0)	1.15 (M)	2.30(X)						
4.3pF(4R3)	1.15(M)	2.30(X)						
4.7pF(4R7)	1.15(M)	2.30(X)						

Part Number	ERF1D			ERF22		
L x W	1.40x1.40			2.80x2.80		
тс	C0G (5C)			C0G (5C)		
Rated Volt.	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Capa	acitance part numbe	ring code) and T (m	nm) Dimension (T Dimen	sion part numbering of	ode)	
5.0pF(5R0)	1.15(M)	2.30(X)				
5.1pF(5R1)	1.15(M)	2.30(X)				
5.6pF(5R6)	1.15(M)	2.30(X)				
6.0pF(6R0)	1.15(M)	2.30(X)				
6.2pF(6R2)	1.15(M)	2.30(X)				
6.8pF(6R8)	1.15(M)	2.30(X)				
7.0pF(7R0)	1.15(M)	2.30(X)				
7.5pF(7R5)	1.15(M)	2.30(X)				
8.0pF(8R0)	1.15(M)	2.30(X)				
8.2pF(8R2)	1.15(M)	2.30(X)				
9.0pF(9R0)	1.15(M)	2.30(X)				
9.1pF(9R1)	1.15(M)	2.30(X)				
10pF(100)	1.15(M)	2.30(X)				
11pF(110)	1.15(M)	2.30(X)				
12pF(120)	1.15(M)	2.30(X)				
13pF(130)	1.15(M)	2.30(X)				
15pF(150)	1.15(M)	2.30(X)				
16pF(160)	1.15(M)	2.30(X)				
18pF(180)	1.15(M)	2.30(X)				
20pF(200)	1.15(M)	2.30(X)				
22pF(220)	1.15(M)	2.30(X)				
24pF(240)	1.15(M)	2.30(X)				
27pF(270)	1.15(M)	2.30(X)				
30pF(300)	1.15(M)	2.30(X)				
33pF(330)	1.15(M)	2.30(X)				
36pF(360)	1.15(M)	2.30(X)				
39pF(390)	1.15(M)	2.30(X)				
43pF(430)	1.15(M)	2.30(X)				
47pF(470)	1.15(M)	2.30(X)				
51pF(510)	1.15(M)	2.30(X)				
56pF(560)	1.15(M)	2.30(X)				
62pF(620)	1.15(M)	2.30(X)				
68pF(680)	1.15(M)	2.30(X)				
75pF(750)	1.15(M)	2.30(X)				
82pF(820)	1.15(M)	2.30(X)				
91pF(910)	1.15(M)	2.30(X)				
100pF(101)	1.15(M)	2.30(X)				
110pF(111)	1.15(W)	2.30(A)	2.30(X)			
			2.30(X)			
120pF(121)			2.30(X)			
130pF(131)			2.30(X)			
150pF(151)						
160pF(161) 180pF(181)			2.30(X) 2.30(X)			
200pF(201)			2.30(X)	2 20/ V /		
220pF(221)				2.30(X)		
240pF(241)				2.30(X)		
270pF(271)				2.30(X)		
300pF(301)				2.30(X)		
330pF(331)				2.30(X)		
360pF(361)				2.30(X)		
390pF(391)				2.30(X)		
430pF(431)				2.30(X)		

Part Number	ERF1D	ERF22					
LxW	1.40x1.40	2.80x2.80					
тс	C0G (5C)	C0G (5C)					
Rated Volt.	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	
Capacitance (Cap	pacitance part numbe	ering code) and T (mm)) Dimension (T Dimens	sion part numbering c	ode)	I	
470pF(471)				2.30(X)			
510pF(511)					2.30(X)		
560pF(561)					2.30(X)		
620pF(621)					2.30(X)		
680pF(681)					2.30(X)		
750pF(751)						2.30(X)	
820pF(821)						2.30(X)	
910pF(911)						2.30(X)	
1000pF(102)						2.30(X)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Ribbon Terminal

■ Features (ERH Series)

- The dielectric is composed of low dielectric loss ceramics. This series is perfectly suited to high frequency applications (VHS-microwave band).
- The series is ultraminiature, yet has a high power capacity. This is the best capacitor available for transmitter and amplifier circuits such as those in broadcasting equipment and mobile base stations.
- ERH1X/3X Series capacitors withstand high temperatures because ribbon leads are attached with silver paste.
- ERH1X/3X Series capacitors are easily soldered and especially well suited in applications where only a soldering iron can be used.

*** | Siver ribbon leads.

*** : Capacitance Code

Part Number		Din	Dimensions (mm)				
Part Number	L	W	T max.	mm) & 5.0 min. 9.0 ±2.0	w		
ERH1XC	1.6 ±0.4	1.4 ±0.4	1.6	5.0 min.	1.3 ±0.4		
ERH3XX	3.2 ±0.4	2.8 ±0.4	3.0	9.0 ±2.0	2.35 ±0.15		

■ Applications

High frequency and high power circuits

Part Number	ERH1X	ERH3X					
LxW	1.60x1.40	3.20x2.80					
тс	C0G (5C)	C0G (5C)					
Rated Volt.	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	
Capacitance (Cap	pacitance part numb	ering code) and T (mm	n) Dimension (T Dimer	sion part numbering o	code)		
0.50pF(R50)	1.60(C)	3.00(X)					
0.6pF(R60)	1.60(C)	3.00(X)					
0.7pF(R70)	1.60(C)	3.00(X)					
0.75pF(R75)	1.60(C)	3.00(X)					
0.8pF(R80)	1.60(C)	3.00(X)					
0.9pF(R90)	1.60(C)	3.00(X)					
1.0pF(1R0)	1.60(C)	3.00(X)					
1.1pF(1R1)	1.60(C)	3.00(X)					
1.2pF(1R2)	1.60(C)	3.00(X)					
1.3pF(1R3)	1.60(C)	3.00(X)					
1.4pF(1R4)	1.60(C)	3.00(X)					
1.5pF(1R5)	1.60(C)	3.00(X)					

Part Number	ERH1X			ERH3X				
LxW	1.60x1.40			3.20x2.80				
тс	C0G (5C)	C0G (5C)						
Rated Volt.	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)		
Capacitance (Capa	acitance part numbe	ring code) and T (mm) Dimension (T Dimen	sion part numbering	code)			
1.6pF(1R6)	1.60(C)	3.00(X)						
1.7pF(1R7)	1.60(C)	3.00(X)						
1.8pF(1R8)	1.60(C)	3.00(X)						
1.9pF(1R9)	1.60(C)	3.00(X)						
2.0pF(2R0)	1.60(C)	3.00(X)						
2.1pF(2R1)	1.60(C)	3.00(X)						
2.2pF(2R2)	1.60(C)	3.00(X)						
2.4pF(2R4)	1.60(C)	3.00(X)						
2.7pF(2R7)	1.60(C)	3.00(X)						
3.0pF(3R0)	1.60(C)	3.00(X)						
3.3pF(3R3)	1.60(C)	3.00(X)						
3.6pF(3R6)	1.60(C)	3.00(X)						
3.9pF(3R9)	1.60(C)	3.00(X)						
4.0pF(4R0)	1.60(C)	3.00(X)						
4.3pF(4R3)	1.60(C)	3.00(X)						
4.7pF(4R7)	1.60(C)	3.00(X)						
5.0pF(5R0)	1.60(C)	3.00(X)						
5.1pF(5R1)	1.60(C)	3.00(X)						
5.6pF(5R6)	1.60(C)	3.00(X)						
6.0pF(6R0)	1.60(C)	3.00(X)						
6.2pF(6R2)	1.60(C)	3.00(X)						
6.8pF(6R8)	1.60(C)	3.00(X)						
7.0pF(7R0)	1.60(C)	3.00(X)						
-	1.60(C)							
7.5pF(7R5)		3.00(X)						
8.0pF(8R0)	1.60(C)	3.00(X)						
8.2pF(8R2)	1.60(C)	3.00(X)						
9.0pF(9R0)	1.60(C)	3.00(X)						
9.1pF(9R1)	1.60(C)	3.00(X)						
10pF(100)	1.60(C)	3.00(X)						
11pF(110)	1.60(C)	3.00(X)						
12pF(120)	1.60(C)	3.00(X)						
13pF(130)	1.60(C)	3.00(X)						
15pF(150)	1.60(C)	3.00(X)						
16pF(160)	1.60(C)	3.00(X)						
18pF(180)	1.60(C)	3.00(X)						
20pF(200)	1.60(C)	3.00(X)						
22pF(220)	1.60(C)	3.00(X)						
24pF(240)	1.60(C)	3.00(X)						
27pF(270)	1.60(C)	3.00(X)						
30pF(300)	1.60(C)	3.00(X)						
33pF(330)	1.60(C)	3.00(X)						
36pF(360)	1.60(C)	3.00(X)						
39pF(390)	1.60(C)	3.00(X)						
43pF(430)	1.60(C)	3.00(X)						
47pF(470)	1.60(C)	3.00(X)						
51pF(510)	1.60(C)	3.00(X)						
56pF(560)	1.60(C)	3.00(X)						
62pF(620)	1.60(C)	3.00(X)						
68pF(680)	1.60(C)	3.00(X)						
75pF(750)	1.60(C)	3.00(X)						
82pF(820)	1.60(C)	3.00(X)						
91pF(910)	1.60(C)	3.00(X)						

Part Number	ERH1X			ERH3X				
LxW	1.60x1.40			3.20x2.80				
тс	C0G (5C)	C0G (5C)						
Rated Volt.	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)		
Capacitance (Cap	acitance part numbe	ering code) and T (mm)	Dimension (T Dimer	nsion part numbering c	ode)			
100pF(101)	1.60(C)	3.00(X)						
110pF(111)			3.00(X)					
120pF(121)			3.00(X)					
130pF(131)			3.00(X)					
150pF(151)			3.00(X)					
160pF(161)			3.00(X)					
180pF(181)	·		3.00(X)			<u> </u>		
200pF(201)			3.00(X)					
220pF(221)				3.00(X)				
240pF(241)				3.00(X)				
270pF(271)				3.00(X)				
300pF(301)				3.00(X)				
330pF(331)				3.00(X)				
360pF(361)				3.00(X)				
390pF(391)				3.00(X)				
430pF(431)				3.00(X)				
470pF(471)				3.00(X)				
510pF(511)					3.00(X)			
560pF(561)					3.00(X)			
620pF(621)					3.00(X)			
680pF(681)					3.00(X)			
750pF(751)						3.00(X)		
820pF(821)						3.00(X)		
910pF(911)						3.00(X)		
1000pF(102)						3.00(X)		

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Ito	em	Specifications		Test Method
NO.		2111	opcomoditorio		1 GOLINIGUIOU
1	Operating Temperati	ure Range	_55 to +125℃	Reference Tempera	ture: 25°C
2	Rated Vo	Itage	See the previous pages	The rated voltage is defined as the maximum voltage wh may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or whichever is larger, should be maintained within the rater voltage range.	
3	Appearar	nce	No defects or abnormalities	Visual inspection	
4	Dimensio	ns	Within the specified dimension	Using calipers	
5	Dielectric	Strength	No defects or abnormalities	is applied between the	observed when 250% of the rated voltage he terminations for 1 to 5 seconds, /discharge current is less than 50mA.
6	Insulation Resistance	25℃	C≦ 470pF :1,000,000MΩ min. 470pF < C≦1,000pF : 100,000MΩ min.		ance should be measured with a DC ng the rated voltage at 25 and 125℃
	(I.R.)	125℃	C≦ 470pF : 100,000MΩ min. 470pF <c≦1,000pf 10,000mω="" :="" min.<="" td=""><td></td><td>nd within 2 minutes of charging.</td></c≦1,000pf>		nd within 2 minutes of charging.
7	Capacita	nce	Within the specified tolerance.		should be measured at 25°C at the
8	Q		C≦ 220pF: Q≥10,000 220pF <c≦ 470pf:="" 5,000<br="" q≥="">470pF<c≦1,000pf: 3,000<br="" q≥="">C: Naminal Capacitance (pE)</c≦1,000pf:></c≦>	frequency and voltage shown in the table. Frequency 1±0.1MHz Voltage 0.5 to 5Vrms	
		Capacitance Variation Rate	C : Nominal Capacitance (pF) Within the specified tolerance (Table A-7)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the	
9	Capacitance Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger)	temperature coefficients The capacitance drift between the maximut, 3 and 5 by the cap	be within the specified tolerance for the ent and capacitance change as Table A. It is calculated by dividing the differences arm and minimum measured values in steps pacitance value in step 3. It is an entire to the first step in the first step
10	Terminal	Adhesive Strength of Termination (for chip type)	No removal of the terminations or other defects should occur.	Solder the capacitor to the test jig (alumina substrate) shown in Fig. 1 using solder containing 2.5% silver. The soldering should be done either with an iron or in furnace and be conducted with care so the soldering is uniform and free of defects such as hea shock. Then apply a 10N* force in the direction of the arrow. *ERF1D:5I	
	Strength	Tensile Strength (for micro- strip type)	Capacitor should not be broken or damaged.		is fixed and a load is applied gradually in ntil its value reaches 10N (5N for ERH1X).
		Bending Strength of lead wire terminal (for micro- strip type)	Lead wire should not be cut or broken.	Position the main body of the capacitor so the lead wire terminal is perpendicular, and load 2.5N to the lead wire terminal. Bend the main body by 90 degrees, bend back to original position, bend 90 degrees in the reverse direction, and then bend back to original position.	

Continued from the preceding page

No.	Continued fro	·		pecifications	Toot Mathad
No.	Ite			•	Test Method
		Appearance Capacitance	No defects or abnormalities Within the specified tolera		Solder the capacitor to the test jig (alumina substrate) shown in Fig. 2 using solder containing 2.5% silver. The soldering should be done either with an iron or using the reflow method and should
11	Vibration Resistance	Q	Satisfies the initial value. C≤ 220pF : Q≥1 220pF < C≤ 470pF : Q≥ 470pF < C≤1,000pF : Q≥ C : Nominal Capacitance	5,000 3,000	be conducted with care so the soldering is uniform and free of defects such as heat shock. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). Solder resist Alumina substrate Fig. 2
					Immerse the capacitor in a solution of ethanol (JIS-K-8101) and
12	Solderabi Terminati	-	95% of the terminations are ly.	e to be soldered evenly and continuous-	rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating immerse in solder containing 2.5% silver for 5±0.5 seconds at 230±5°C. The dipping depth for microstrip type capacitors is up to 1 mm from the root of the terminal.
				ved characteristics should satisfy the	
			Item Appearance	Specifications No marked defect	Preheat the capacitor at 80 to 100°C for 2 minutes and then at
	Docietano	0	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	150 to 200°C for 5 minutes. Immerse in solder containing 2.5% silver for 3±0.5 seconds at
13	Resistance to Soldering Heat		Q 	C≦ 220pF: Q≥10,000 220pF <c≦ 470pf:="" 5,000<br="" q≥="">470pF<c≦1,000pf: 3,000<br="" q≥="">More than 30% of the initial spec-</c≦1,000pf:></c≦>	270±5°C. Set at room temperature for 24±2 hours, then measure. The dipping depth for microstrip type capacitors is up to 2mm from the root of the terminal.
			I.R.	ification value at 25℃.	
			Dielectric Strength	No failure	
			The measured and obser	C : Nominal Capacitance (pF) ved characteristics should satisfy the	Fix the capacitor to the supporting jig in the same manner and
			specifications in the follow	_	under the same conditions as (11). Perform the five cycles
			Appearance	Specifications No marked defect	according to the four heat treatments listed in the following table. Then, repeat twice the successive cycles of immersion, each
			Capacitance	Within ±1% or ±0.25pF	cycle consisting of immersion in a fresh water at 65 ⁺⁵ ℃ for 15
11	Temperat	ure	Change	(Whichever is larger)	minutes and immersion in a saturated aqueous solution of salt at
14	Cycle		Q	C≦ 220pF: Q≥10,000 220pF <c≦ 470pf:="" 5,000<="" q≥="" td=""><td>0±3°c for 15 minutes. The capacitor is promptly washed with running water, dried with a</td></c≦>	0±3°c for 15 minutes. The capacitor is promptly washed with running water, dried with a
				470pF <c≦1,000pf 3,000<="" :="" q≥="" td=""><td>dry cloth, and allowed to sit at room temperature for 24±2 hours.</td></c≦1,000pf>	dry cloth, and allowed to sit at room temperature for 24±2 hours.
			I.R.	More than 30% of the initial specification value at 25°C.	Step 1 2 3 4
			Dielectric Strength	No failure	Temp. (°C) -55^{+0}_{-3} Room Temp. 125^{+3}_{-3} Room Temp.
				C : Nominal Capacitance (pF)	Time (min.) 30±3 2 to 3 30±3 2 to 3
					Apply the 24-hour heat (-10 to +65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Remove, let sit for 24±2 hours at room temperature, and measure.
			The measured and obser specifications in the follow	ved characteristics should satisfy the ring table.	10 Humidity 80–98% Humidity 80–98% Humidity 80–98% Humidity 80–98% Humidity 90–98% Humidity 90
			Item	Specifications No marked defect	60
			Appearance Capacitance	No marked defect Within ±5% or ±0.5pF	50 45
15	5 Humidity		Change	(Whichever is larger)	
13			Q	C≦ 220pF : Q≥10,000 220pF <c≤ 470pf="" 5,000<br="" :="" q≥="">470pF<c≤1,000pf 3,000<="" :="" q≥="" td=""><td>9 40 8 35 9 25 9 20 1 10 0 1 10 0</td></c≤1,000pf></c≤>	9 40 8 35 9 25 9 20 1 10 0 1 10 0
			I.R.	More than 30% of the initial spec-	15 Initial measurement
				ification value at 25°C.	5 Applied voltage 50Vdc
				C : Nominal Capacitance (pF)	-5
					One cycle 24 hours
					0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 Hours
			1		Liouis

Continued from the preceding page.

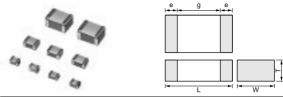
No.	Item	S	pecifications	Test Method
16	High Temperature Load	The measured and observed the specifications in the formal litem Appearance Capacitance Change Q I.R.	red characteristics should satisfy llowing table. Specifications No marked defect Within ±2.5% or ±0.25pF (Whichever is larger) C≦ 220pF : Q≥10,000 220pF <c≦ (pf)<="" 25°c.="" 3,000="" 30%="" 470pf="" 470pf<c≦1,000pf="" 5,000="" :="" at="" c="" capacitance="" initial="" more="" nominal="" of="" q≥="" specification="" td="" than="" the="" value=""><td>Apply 150% of the rated voltage for 2,000±12 hours at 125±3℃. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.</td></c≦>	Apply 150% of the rated voltage for 2,000±12 hours at 125±3℃. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.

Table A

	Temp. Coeff. (ppm/°C) Note 1	Capacitance Change from 25℃ Value (%)						
Char. Code		− 55℃		_30°C		−10 ℃		
		Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	
6C	0±60	0.73	-0.44	0.48	-0.32	0.29	-0.20	

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.

Chip Monolithic Ceramic Capacitors



High Frequency Type

SMD Type

■ Features (ERA Series)

- 1. Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies
- 2. Nickel barriered terminations of ERA series improve solderability and decrease solder leaching.
- 3. ERA11A/21A series are designed for both flow and reflow soldering and ERA32 series are designed for reflow soldering.

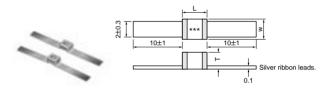
				**				
Part Number	Dimensions (mm)							
Part Number	L	W	T max.	е	g min.			
ERA11A	1.25 ^{+0.5} _{-0.3}	1.0 +0.5	1.0±0.2	0.15 min.	0.3			
ERA21A ERA21B	2.0 +0.5 - 0.3	1.25 ^{+0.5} _{-0.3}	1.0±0.2 1.25±0.2	0.2 min.	0.5			
ERA32X	3.2 ^{+0.6} _{-0.4}	2.5 ^{+0.5} _{-0.3}	1.7±0.2	0.3 min.	0.5			

■ Applications

High frequency and high-power circuits

Part Number	ERA11			ERA21		ERA32			
LxW		1.25x1.00		2.00x1.25		3.20x2.50			
тс	C0G (5C)			C0G (5C)		C0G (5C)			
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Cap	pacitance part	numbering co	de) and T (mm) Dimension (T	Dimension pa	rt numbering	code)		
0.50pF(R50)	1.00(A)			1.00(A)			1.70(X)		
0.6pF(R60)	1.00(A)			1.00(A)			1.70(X)		
0.7pF(R70)	1.00(A)			1.00(A)			1.70(X)		
0.75pF(R75)	1.00(A)			1.00(A)			1.70(X)		
0.8pF(R80)	1.00(A)			1.00(A)			1.70(X)		
0.9pF(R90)	1.00(A)			1.00(A)			1.70(X)		
1.0pF(1R0)	1.00(A)			1.00(A)			1.70(X)		
1.1pF(1R1)	1.00(A)			1.00(A)			1.70(X)		
1.2pF(1R2)	1.00(A)			1.00(A)			1.70(X)		
1.3pF(1R3)	1.00(A)			1.00(A)			1.70(X)		
1.4pF(1R4)	1.00(A)			1.00(A)			1.70(X)		
1.5pF(1R5)	1.00(A)			1.00(A)			1.70(X)		
1.6pF(1R6)	1.00(A)			1.00(A)			1.70(X)		
1.7pF(1R7)	1.00(A)			1.00(A)			1.70(X)		
1.8pF(1R8)	1.00(A)			1.00(A)			1.70(X)		
1.9pF(1R9)	1.00(A)			1.00(A)			1.70(X)		
2.0pF(2R0)	1.00(A)			1.00(A)			1.70(X)		
2.1pF(2R1)	1.00(A)			1.00(A)			1.70(X)		
2.2pF(2R2)	1.00(A)			1.00(A)			1.70(X)		
2.4pF(2R4)	1.00(A)			1.00(A)			1.70(X)		
2.7pF(2R7)	1.00(A)			1.00(A)			1.70(X)		
3.0pF(3R0)	1.00(A)			1.00(A)			1.70(X)		
3.3pF(3R3)	1.00(A)			1.00(A)			1.70(X)		
3.6pF(3R6)	1.00(A)			1.00(A)			1.70(X)		
3.9pF(3R9)	1.00(A)			1.00(A)			1.70(X)		
4.0pF(4R0)	1.00(A)			1.00(A)			1.70(X)		
4.3pF(4R3)	1.00(A)			1.00(A)			1.70(X)		
4.7pF(4R7)	1.00(A)			1.00(A)			1.70(X)		
5.0pF(5R0)	1.00(A)			1.00(A)			1.70(X)		
5.1pF(5R1)	1.00(A)			1.00(A)			1.70(X)		

Part Number		ERA11			ERA21			ERA32		
LxW		1.25x1.00			2.00x1.25			3.20x2.50		
тс	C0G (5C)			C0G (5C)			C0G (5C)			
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	
Capacitance (Ca	pacitance par	t numbering co	de) and T (mr		Dimension par	rt numbering	code)			
5.6pF(5R6)	1.00(A)			1.00(A)			1.70(X)			
6.0pF(6R0)	1.00(A)			1.00(A)			1.70(X)			
6.2pF(6R2)	1.00(A)			1.00(A)			1.70(X)			
6.8pF(6R8)	1.00(A)			1.00(A)			1.70(X)			
7.0pF(7R0)	1.00(A)			1.00(A)			1.70(X)			
7.5pF(7R5)	1.00(A)			1.00(A)			1.70(X)			
8.0pF(8R0)	1.00(A)			1.00(A)			1.70(X)			
8.2pF(8R2)	1.00(A)			1.00(A)			1.70(X)			
9.0pF(9R0)	1.00(A)			1.25(B)			1.70(X)			
9.1pF(9R1)	1.00(A)			1.25(B)			1.70(X)			
10pF(100)	1.00(A)			1.25(B)			1.70(X)			
11pF(110)	1.00(A)			1.25(B)			1.70(X)			
12pF(120)	1.00(A)			1.25(B)			1.70(X)			
13pF(130)	1.00(A)			1.25(B)			1.70(X)			
15pF(150)		1.00(A)		1.25(B)			1.70(X)			
16pF(160)		1.00(A)		1.25(B)			1.00(X)			
18pF(180)		1.00(A)		1.25(B)			1.70(X)			
20pF(200)		1.00(A)		1.25(B)			1.70(X)			
22pF(220)		1.00(A)		1.25(B)			1.70(X)			
24pF(240)			1.00(A)	1.25(B)			1.70(X)			
27pF(270)			1.00(A)	1.25(B)			1.70(X)			
30pF(300)			1.00(A)	1.25(B)			1.70(X)			
33pF(330)			1.00(A)	1.25(B)			1.70(X)			
36pF(360)			1.00(A)	1.25(B)			1.70(X)			
39pF(390)			1.00(A)	1.25(B)			1.70(X)			
43pF(430)			1.00(A)	1.25(B)			1.70(X)			
47pF(470)			1.00(A)	1.25(B)			1.70(X)			
51pF(510)			1.00(A)	1.25(B)			1.70(X)			
56pF(560)					1.25(B)		1.70(X)			
62pF(620)					1.25(B)		1.70(X)			
68pF(680)					1.25(B)		1.70(X)			
75pF(750)					1.25(B)		1.70(X)			
82pF(820)					1.25(B)		1.70(X)			
91pF(910)					1.25(B)		1.70(X)			
100pF(101)						1.00(A)	1.70(X)			
110pF(111)						1.25(B)	1.70(X)			
120pF(121)						1.25(B)	1.70(X)			
130pF(131)						1.25(B)	1.70(X)			
150pF(151)						1.25(B)	1.70(X)			
160pF(161)						1.25(B)	1.70(X)			
180pF(181)								1.70(X)		
200pF(201)								1.70(X)		
220pF(221)								1.70(X)		
240pF(241)								1.70(X)		
270pF(271)								1.70(X)		
300pF(301)								1.70(X)		
330pF(331)								1.70(X)		
360pF(361)								1.70(X)		
390pF(391)								1.70(X)		
430pF(431)								1.70(X)		
470pF(471)								1.70(X)		
510pF(511)								1.70(X)		


Part Number		ERA11			ERA21			ERA32	
LxW		1.25x1.00			2.00x1.25			3.20x2.50	
тс		C0G (5C)			C0G (5C)			C0G (5C)	
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance par	t numbering co	ode) and T (mn	n) Dimension (T	Dimension pa	rt numbering	code)	'	•
560pF(561)									1.70(X)
620pF(621)									1.70(X)
680pF(681)									1.70(X)
750pF(751)									1.70(X)
820pF(821)									1.70(X)
910pF(911)									1.70(X)
1000pF(102)									1.70(X)

The part numbering code is shown in ().

Ribbon Terminal

■ Features (ERD Series)

- 1. Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz.
- 2. ERD Series capacitors withstand at high temperatures because ribbon leads are attached with silver paste.
- 3. ERD Series capacitors are easily soldered and are especially well suited in applications where only a soldering iron can be used.

*** : Capacitance Code

Part Number		Dimensions (mm)				
Part Number	L max.	W max.	T max.			
ERD32D	4.0	3.0	2.3			

■ Applications

High frequency and high power circuits

Part Number		ERD32					
LxW		4.00x3.00					
тс		COG (5C)					
Rated Volt.	200 (2D)	100 (2A)	50 (1H)				
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering	code)				
0.50pF(R50)	2.30(D)						
0.6pF(R60)	2.30 (D)						
0.7pF(R70)	2.30(D)						
0.75pF(R75)	2.30(D)						
0.8pF(R80)	2.30(D)						
0.9pF(R90)	2.30(D)						
1.0pF(1R0)	2.30(D)						
1.1pF(1R1)	2.30(D)						
1.2pF(1R2)	2.30(D)						
1.3pF(1R3)	2.30(D)						
1.4pF(1R4)	2.30(D)						
1.5pF(1R5)	2.30(D)						
1.6pF(1R6)	2.30(D)						
1.7pF(1R7)	2.30 (D)						
1.8pF(1R8)	2.30 (D)						
1.9pF(1R9)	2.30 (D)						
2.0pF(2R0)	2.30(D)						
2.1pF(2R1)	2.30(D)						

Dimensions are shown in mm and Rated Voltage in Vdc.

Part Number	ERD32 4 00×3 00						
LxW		4.00x3.00					
гс		C0G (5C)					
Rated Volt.	200 (2D)	100 (2A)	50 (1H)				
Capacitance (Capacitano) Dimension (T Dimension part numbering co	ode)				
2.2pF(2R2)	2.30 (D)						
2.4pF(2R4)	2.30(D)						
2.7pF(2R7)	2.30(D)						
3.0pF(3R0)	2.30(D)						
3.3pF(3R3)	2.30(D)						
3.6pF(3R6)	2.30(D)						
3.9pF(3R9)	2.30(D)						
4.0pF(4R0)	2.30(D)						
4.3pF(4R3)	2.30(D)						
4.7pF(4R7)	2.30(D)						
5.0pF(5R0)	2.30(D)						
5.1pF(5R1)	2.30(D)						
5.6pF(5R6)	2.30(D)						
6.0pF(6R0)	2.30(D)						
6.2pF(6R2)	2.30 (D)						
6.8pF(6R8)	2.30 (D)						
7.0pF(7R0)	2.30(D)						
7.5pF(7R5)	2.30 (D)						
8.0pF(8R0)	2.30 (D)						
8.2pF(8R2)	2.30 (D)						
9.0pF(9R0)	2.30(D)						
9.1pF(9R1)	2.30(D)						
10pF(100)	2.30(D)						
11pF(110)	2.30(D)						
12pF(120)	2.30(D)						
13pF(130)	2.30(D)						
15pF(150)	2.30(D)						
16pF(160)	2.30(D)						
18pF(180)	2.30(D)						
20pF(200)	2.30(D)						
22pF(220)	2.30(D)						
24pF(240)	2.30(D)						
27pF(270)	2.30(D)						
30pF(300)	2.30(D)						
33pF(330)	2.30(D)						
36pF(360)	2.30(D)						
39pF(390)	2.30(D)						
43pF(430)	2.30(D)						
47pF(470)	2.30(D)						
51pF(510)	2.30(D)						
56pF(560)	2.30(D)						
62pF(620)	2.30(D)						
68pF(680)	2.30(D)						
75pF(750)	2.30(D)						
82pF(820)	2.30(D)						
91pF(910)	2.30(D)						
100pF(101)	2.30(D)						
110pF(111)	2.30(D)						
120pF(121)	2.30(D)						
130pF(131)	2.30(D)						
150pF(151) 160pF(161)	2.30(D) 2.30(D)						

muRata

Part Number		ERD32					
L x W	4.00x3.00						
тс		C0G (5C)					
Rated Volt.	200 (2D)	100 (2A)	50 (1H)				
Capacitance (Capacitano	ce part numbering code) and T (mm) Dimension (T Dimension part numbering c	ode)				
180pF(181)		2.30 (D)					
200pF(201)		2.30(D)					
220pF(221)		2.30 (D)					
240pF(241)		2.30 (D)					
270pF(271)		2.30 (D)					
300pF(301)		2.30 (D)					
330pF(331)		2.30 (D)					
360pF(361)		2.30 (D)					
390pF(391)		2.30 (D)					
430pF(431)		2.30 (D)					
470pF(471)		2.30 (D)					
510pF(511)		2.30 (D)					
560pF(561)			2.30(D)				
620pF(621)			2.30(D)				
680pF(681)			2.30(D)				
750pF(751)			2.30(D)				
820pF(821)			2.30(D)				
910pF(911)			2.30(D)				
1000pF(102)			2.30(D)				

muRata

The part numbering code is shown in (). Dimensions are shown in mm and Rated Voltage in Vdc.

No	l+ ₄	em	Specifications	Test Method		
NO			opcomoditoris	rest ivietilou		
1	Operating Temperati		-55 to +125℃	Reference Temperature: 25°C		
2	2 Rated Voltage		See the previous pages	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, should be maintained within the rated voltage range.		
3	Appeara	nce	No defects or abnormalities	Visual inspection		
4	Dimensio	ns	Within the specified dimension	Using calipers		
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 300% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.		
6	Insulation (I.R.)	Resistance	10,000MΩ min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and standard humidity and within 2 minutes of charging.		
7	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at 25℃ at the		
8	·		C≦ 220pF: Q≧10,000 220pF <c≦ 470pf:="" 5,000<br="" q≥="">470pF<c≤1,000pf: 3,000<br="" q≥="">C: Nominal Capacitance (pF)</c≤1,000pf:></c≦>	Frequency and voltage shown in the table. Frequency 1±0.1MHz Voltage 0.5 to 5Vrms Voltage Voltage		
	Capacitance Variation Rate		Within the specified tolerance (Table A-6)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the		
9	Capacitance Temperature Characteristics	nerature example of the second		Oupacitarice	•	temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in steps 1, 3 and 5 by the capacitance value in step 3. The capacitance change should be measured after 5 min. at each specified temperature stage. Step Temperature (°C) 1 25±2 2 -55±3
				3 25±2		
			4 125±3			
				5 25±2		
10	Terminal	Adhesive Strength of Termination (for chip type)	No removal of the terminations or other defects should occur	Solder the capacitor to the test jig (alumina substrate) shown in Fig.1 using solder containing 2.5% silver. The soldering should be done either with an iron or in furnace and be conducted with care so the soldering is uniform and free of defects such as heat shock. Then apply a 10N° force in the direction of the arrow. *5N (ERA11) Alumina substrate Fig.1		
10	Strength	Tensile Strength (for micro- strip type)	Capacitor should not be broken or damaged	The capacitor body is fixed and a load is applied gradually in the axial direction until its value reaches 5N.		
		Bending Strength of lead wire terminal (for micro- strip type)	Lead wire should not be cut or broken	Position the main body of the capacitor so the lead wire terminal is perpendicular, and load 2.5N to the lead wire terminal. Bend the main body by 90 degrees, bend back to original position, bend 90 degrees in the reverse direction, and then bend back to original position.		

7	Continued fr	om the pred	eding page.					
No.	. Ite	em	S	pecifications		Test Metho	d	
		Appearance Capacitance	No defects or abnormalitie Within the specified tolera		Fig. 2 using solde	or to the test jig (al	ilver. The s	soldering should
11	Vibration Resistance	Q	Satisfies the initial value. C≦ 220pF : Q≧1 220pF < C≦ 470pF : Q≧ 470pF < C≦1,000pF : Q≧ C : Nominal Capacitance	5,000 3,000	be done either with an iron or using the reflow method and show be conducted with care so the soldering is uniform and free defects such as heat shock. The capacitor should be subjected a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate lim of 10 and 55Hz. The frequency range, from 10 to 55Hz at return to 10Hz, should be traversed in approximately 1 minute This motion should be applied for a period of 2 hours in each of mutually perpendicular directions (total of 6 hours). Solder resist Alumina substrate			orm and free of be subjected to e of 1.5mm, the proximate limits 0 to 55Hz and nately 1 minute. ours in each of 3
12	2 Solderability of Termination 75% of the terminations are to be soldered even ly.			e to be soldered evenly and continuous-	rosin (JIS-K-5902) 80 to 120°C for 10 solder containing 2 The dipping depth	Fig. 2 citor in a solution of (25% rosin in weig to 30 seconds. Afte 2.5% silver for 5±0. for microstrip type	ht proportion or preheatin 5 seconds	on). Preheat at ag immerse in at 230±5℃.
13	Resistance to Soldering Heat		The measured and obserspecifications in the follow Item Appearance Capacitance Change Q Dielectric Strength	ved characteristics should satisfy the ving table. Specifications No marked defect Within ±2.5% or ±0.25pF (Whichever is larger) C≦ 220pF : Q≥10,000 220pF <c≤ (pf)<="" 3,000="" 470pf="" 470pf<c≤1,000pf="" 5,000="" :="" c="" capacitance="" failure="" no="" nominal="" q≥="" td=""><td colspan="3">Freheat according to the conditions listed in the table below Immerse in solder containing 2.5% silver for 3±0.5 second 270±5℃. Set at room temperature for 24±2 hours, then measure. The dipping depth for microstrip type capacitors to 2mm from the root of the terminal. Chip Size Preheat Condition 2.0×1.25mm max. 1minute at 120 to 150℃ 3.2×2.5mm Each 1 minute at 100 to 120℃ and then 170 to 2000 </td><td>0.5 seconds at rs, then capacitors is up on 150℃</td></c≤>	Freheat according to the conditions listed in the table below Immerse in solder containing 2.5% silver for 3±0.5 second 270±5℃. Set at room temperature for 24±2 hours, then measure. The dipping depth for microstrip type capacitors to 2mm from the root of the terminal. Chip Size Preheat Condition 2.0×1.25mm max. 1minute at 120 to 150℃ 3.2×2.5mm Each 1 minute at 100 to 120℃ and then 170 to 2000			0.5 seconds at rs, then capacitors is up on 150℃
14	Temperat Cycle	ture	The measured and obsers specifications in the follow Item Appearance Capacitance Change Q I.R. Dielectric Strength	ved characteristics should satisfy the ring table. Specifications No marked defect Within $\pm 5\%$ or ± 0.5 pF (Whichever is larger) $C \ge 30$ pF : $Q \ge 350$ 10 pF $\le C < 30$ pF : $Q \ge 275 + \frac{5}{2}$ C $C < 10$ pF : $Q \ge 200 + 10$ C $1,000$ M Ω min. No failure $C : Nominal Capacitance (pF)$	under the same co according to the fo Let sit for 24±2 ho Step Temp.(°C) —	to the supporting jig in sunditions as (11). Per urrheat treatments liurs at room tempers 1 2 55 \(^{+\oldsymbol{0}}_{-3}\) Room Temp. 30\(^{+\oldsymbol{3}}_{-3}\) 2 to 3	rform the fivisted in the ature, then r	ve cycles following table.
15	Humidity		The measured and obserspecifications in the follow Item Appearance Capacitance Change Q I.R.	ved characteristics should satisfy the	treatment shown b	Humidity 90–98%	e times. Remeasure. Humidity 80–98%	

Continued on the following page.

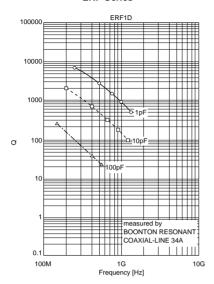
One cycle 24 hours 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 - Hours

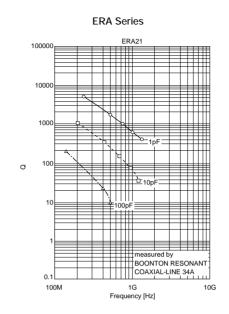
C : Nominal Capacitance (pF)

Continued from the preceding page.

No.	Item	S	pecifications	Test Method
		The measured and obserspecifications in the follow	rved characteristics should satisfy the ving table.	
16	High Temperature	Appearance Capacitance Change	No marked defect Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1,000±12 hours at 125+4/–0°C. Remove and let sit for 24±2 hours at room
	Load	Q	C≥30pF : Q≥350 10pF≤C<30pF : Q≥275+ ½ C C<10pF : Q≥200+10C	temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	1,000MΩ min. C: Nominal Capacitance (pF)	

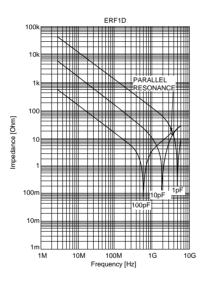
Table A

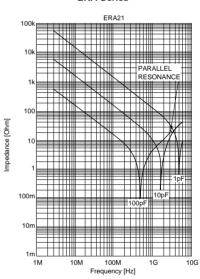

	- o "	Capacitance Change from 25°C Value (%)					
Char. Code	Temp. Coeff. (ppm/℃) Note 1	-5	5℃	-3	0℃	-1	0℃
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11
6C	0±60	0.73	-0.44	0.48	-0.32	0.29	-0.20


Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.

ERA/ERD/ERF/ERH Series Data

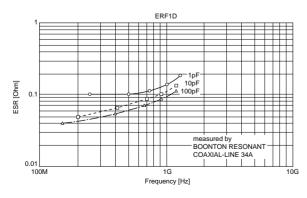
■ Q-Frequency Characteristics


ERF Series

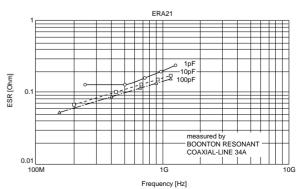


■ Impedance-Frequency Characteristics

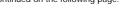
ERF Series



ERA Series

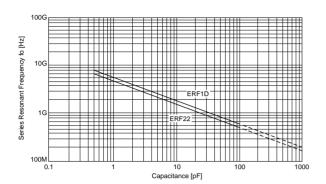


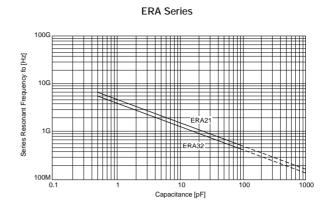
■ ESR-Frequency Characteristics


ERF Series

ERA Series

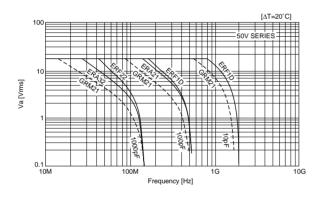
Continued on the following page.

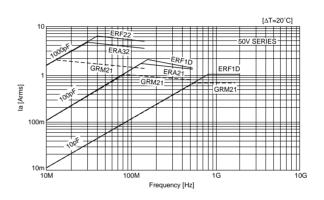

muRata


ERA/ERD/ERF/ERH Series Data

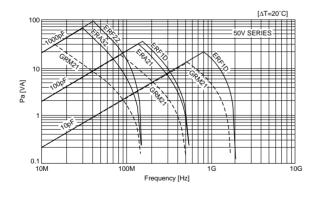
(Variable) Continued from the preceding page.

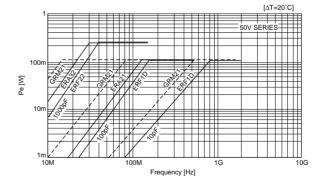
■ Resonant Frequency-Capacitance


ERF Series



■ Allowable Voltage-Frequency


■ Allowable Current-Frequency



■ Allowable Apparent Power-Frequency

■ Allowable Effective Power-Frequency

Package

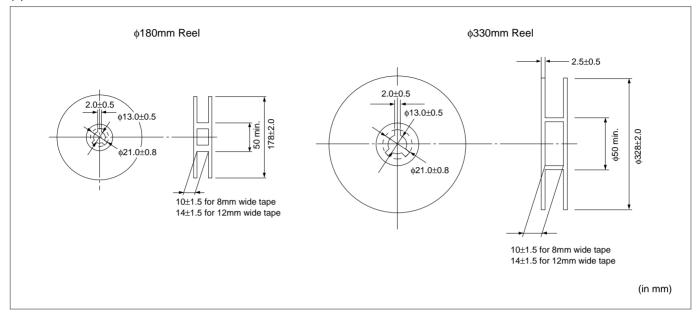
■ Packaging Code

Dackaging Type	Tape Carrier Packaging	Bulk Case Packaging	Bulk Packaging		
Packaging Type	Tape Carrier Fackaging	Bulk Case Packaging	Bulk Packaging in a Bag	Bulk Packaging in a Tray	
Packaging Code	D, L, K, J, E, F	С	В	Т	

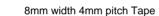
■ Minimum Quantity Guide

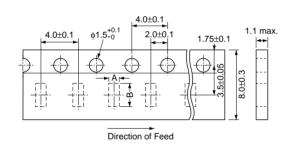
		Dim	ensions	(mm)			Quantit	y (pcs.)		
Part Number		Diiii		(11111)	ø180m	ø180mm reel		ø330mm reel		Bulk Bag
		L	W	Т	Paper Tape	Plastic Tape	Paper Tape	Plastic Tape	Bulk Case	Duik Day
Jltra Miniaturized	GRM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
	GRM18	1.6	0.8	0.8	4,000	-	10,000	-	15,000	1,000
	GRM21			0.6	4,000	-	10,000	-	10,000	1,000
		2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
For Flow/Reflow	GINWIZI	2.0	1.23	1.0	-	3,000	-	10,000	-	1,000
roi riow/Reliow				1.25	•	3,000	-	10,000	5,000 2)	1,000
				0.6/0.85	4,000	-	10,000	-	-	1,000
	GRM31	3.2	1.6	1.15	-	3,000	-	10,000	-	1,000
				1.6	-	2,000	-	6,000	-	1,000
	GRM155	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
	GRM15X	1.0	0.5	0.25	10,000	-	50,000	-	-	1,000
				1.15	-	3,000	-	10,000	-	1,000
				1.35	-	2,000	-	8,000	-	1,000
	GRM32	3.2	2.5	1.8/1.6	-	1,000	-	4,000	-	1,000
				2.0	-	1,000	-	4,000	-	1,000
				2.5	-	1,000	-	4,000	-	1,000
For Reflow	GRM43			1.15	-	1,000	-	5,000	-	1,000
			5 3.2	1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
		4.5		2.5	-	500	-	2,000	-	1,000
				2.8	-	500	-	1,500	-	1,000
			5.0	1.15	-	1,000	-	5,000	-	1,000
		5.7		1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
	GRM55			2.5	-	500	-	2,000	-	500
				3.2	-	300	-	1,500	-	500
	GJM03	0.6	0.3	0.3	15,000	_	50,000	-	-	1,000
High Power Type	GJM15	1.0	0.5	0.5	10,000	_	50,000	-	50,000	1,000
	GQM18	1.6	0.8	0.8	4,000	_	10,000	-	-	1,000
	GQM21	2.0	1.25	0.85	4,000	_	10,000	-	-	1,000
	ERA11	1.25	1.0	1.0	-	_	-	-	_	1,000
High Frequency	ERA21	2.0	1.25	1.0/1.25	-	3,000	_	-	-	1,000
J 42333	ERA32	3.2	2.5	1.7	_	2,000	-	-	_	1,000
	ERF1D	1.4	1.4	1.15	_	2,000	_	-	_	1,000
	ERF22	2.8	2.8	2.3	_	1,000	-	-	-	1,000
For Ultrasonic	GRM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
	GMA05	0.5	0.5	0.35	-,000	_	-	-	-	400 1)
Micro Chip	GMA08	0.8	0.8	0.5	_	_	_	-	_	400 1)
	GNM1M	1.37	1.0	0.6	4,000	_	10,000	_	_	1,000
		1.07	1.0	0.8	4,000	_	10,000	_	_	1,000
Array	GNM31	3.2	1.6	1.0	-	3,000	-	10,000	-	1,000
	GNM21	2.0	1.25	0.6/0.85	4,000	-	10,000	-	-	1,000
	LLL18	0.8	1.6	0.6	-	4,000	-	10,000	-	1,000
	LLL 10	0.0	1.0	0.6	-	4,000	-	10,000	-	1,000
Low ESL	LLL21	1.25	2.0	0.85	-	3,000	-	10,000	-	1,000
LOW ESL				0.85					-	
	LLL31	1.6	3.2		-	4,000	-	10,000		1,000
				1.15	-	3,000	-	10,000	-	1,000

²⁾ $10\mu F,\,1.0\mu F,\,3.3/4.7\mu F$ of 6.3V R6 rated are not available by bulk case.

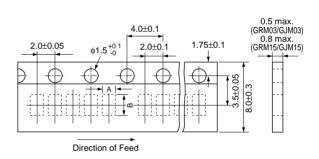


Package


Continued from the preceding page.


■ Tape Carrier Packaging

(1) Dimensions of Reel


(2) Dimensions of Paper Tape

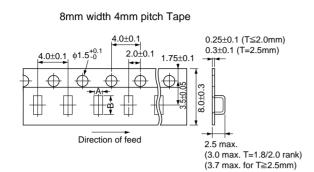
Part Number	А	В
GRM18 GQM18	1.05±0.1	1.85±0.1
GNM1M	1.17±0.05	1.55±0.05
GRM21 (T≦0.85mm) GQM21 GNM21	1.55±0.15	2.3±0.15
GRM31 (T≦0.85mm) GNM31 (T≦0.8mm)	2.0±0.2	3.6±0.2
GRM32 (T=0.85mm)	2.8±0.2	3.6±0.2

8mm width 2mm pitch Tape

Part Number	A*	B*
GJM03 GRM03	0.37	0.67
GJM15 GRM15	0.65	1.15

*Nominal Value

(in mm)



*Nominal Value

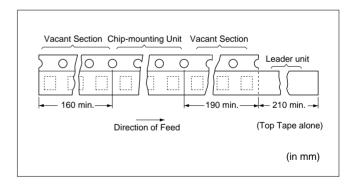
Package

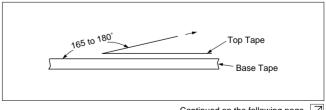
Continued from the preceding page.

(3) Dimensions of Plastic Tape

Part Number	Α	В
LLL18	1.05±0.1	1.85±0.1
GRM21 (T≧1.0mm) LLL21	1.45±0.2	2.25±0.2
GRM31 (T≥1.15mm) LLL31 GNM31 (T≥1.0mm)	1.9±0.2	3.5±0.2
GRM32 (T≧1.15mm)	2.8±0.2	3.5±0.2
ERA21	1.8*	2.6*
ERA32	2.8*	3.5*
ERF1D	2.0*	2.1*
ERF22	3.1*	3.2*

12mm width 4mm pitch Tape Direction of feed 2.5 max for GRM43/55 (3.7 max. for T=2.5mm) (4.7 max. for T≥3.0mm)

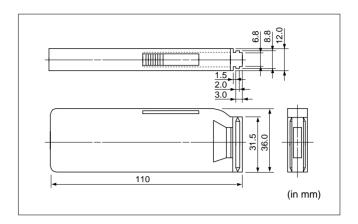

Part Number	A*	B*
GRM43	3.6	4.9
GRM55	5.2	6.1


*Nominal Value

(in mm)

(4) Taping Method

- 1) Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- 2 Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
- 3 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not
- 5 The top tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
- 6 Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
- $\ensuremath{\mathfrak{T}}$ Peeling off force : 0.1 to 0.6N* in the direction shown *GRM03 GJM03 : 0.05 to 0.5N below.



Package

Continued from the preceding page.

■ Dimensions of Bulk Case Packaging The bulk case uses antistatic materials. Please contact Murata for details.

⚠Caution

■ Storage and Operating Conditions

Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases.

Storage environment must be at an ambient temperature of 5-40 degree C and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have

elapsed, check solderability before use. (Reference Data 1. Solderability)

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Handling

1. Inspection

Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.

- 2. Board Separation (or depanalization)
- (1) Board flexing at the time of separation causes cracked chips or broken solder.
- (2) Severity of stresses imposed on the chip at the time of board break is in the order of: Pushback<Slitter<V Slot<Perforator.</p>

- (3) Board separation must be performed using special jigs, not with hands.
- 3. Reel and bulk case

In the handling of reel and case, please be careful and do not drop it.

Do not use chips from a case which has been dropped.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCTS IS USED.

⚠ Caution

■ Soldering and Mounting

1. Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

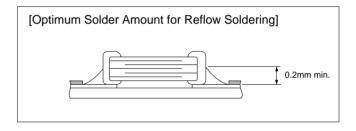
[Component Direction]

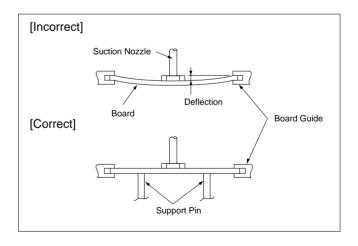
Locate chip horizontal to the direction in which stress acts

[Chip Mounting Close to Board Separation Point]

Chip arrangement Worst A-C-(B-D) Best

(Reference Data 2. Board bending strength for solder fillet height) (Reference Data 3. Temperature cycling for solder fillet height) (Reference Data 4. Board bending strength for board material)


2. Solder Paste Printing


- Overly thick application of solder paste results in excessive fillet height solder.
 This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked
- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

3. Chip Placing

chips.

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically. (Reference Data 5. Break strength)

1 Caution

Continued from the preceding page.

4. Reflow Soldering

- Sudden heating of the chip results in distortion due to excessive expansion and construction forces within the chip causing cracked chips. So when preheating, keep temperature differential, ΔT , within the range shown in Table 1. The smaller the ΔT , the less stress on the chip.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the above table.

Table 1

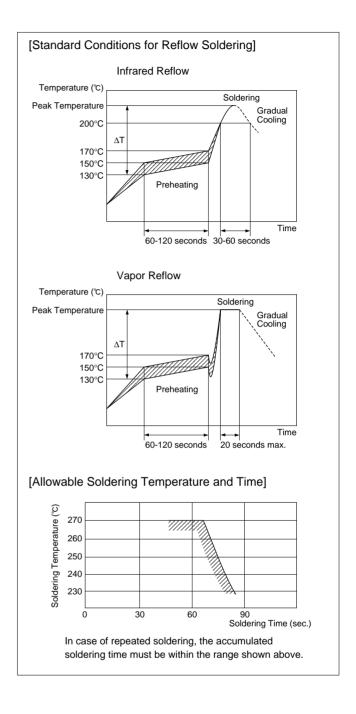
Part Number	Temperature Differential
GRM02/03/15/18/21/31	
GJM03/15	
LLL18/21/31	ΔΤ≦190℃
ERB11/21, ERF1D	
GQM18/21	
GRM32/43/55	
LLA18/21/31	
LLM21/31	ΔΤ≦130℃
GNM	
ERB32, ERF22	

Recommended Conditions

	Pb-Sn S	Lead Free Solder	
	Infrared Reflow	Vapor Reflow	Lead Free Solder
Peak Temperature	230-250°C	230-240°C	240-260°C
Atmosphere	Air	Air	Air or N2

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu


Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

5. Leaded Component Insertion

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

1 Caution

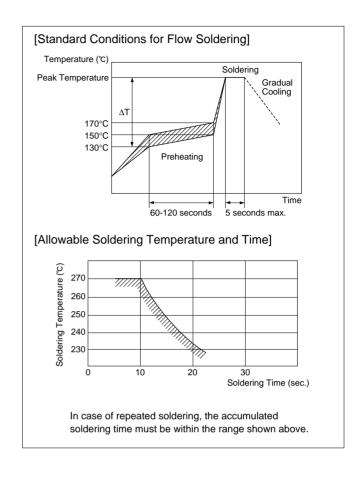
Continued from the preceding page.

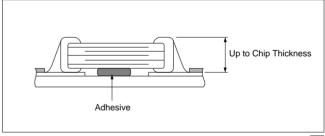
6. Flow Soldering

- Sudden heating of the chip results in thermal distortion causing cracked chips. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- When preheating, keep the temperature differential between solder temperature and chip surface temperature, ΔT , within the range shown in Table 2. The smaller the ΔT , the less stress on the chip. When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 2.

Table 2


Part Number	Temperature Differential
GRM18/21/31	
LLL21/31	ΛT≤150°C
ERB11/21, ERF1D	Δ1≦150 C
GQM18/21	


Recommended Conditions

	Pb-Sn Solder	Lead Free Solder
Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N ₂

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu

Optimum Solder Amount for Flow Soldering

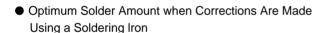
1 Caution

Continued from the preceding page.

7. Correction with a Soldering Iron

(1) For Chip Type Capacitors

 Sudden heating of the chip results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential, ΔT , within the range shown in Table 3. The smaller the ΔT , the less stress on the chip.


Table 3

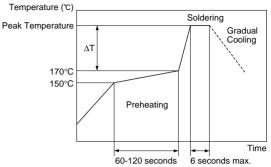
14510 0			
Part Number	Temperature Differential	Peak Temperature	Atmosphere
GRM15/18/21/31			
GJM15		300°C max.	
LLL18/21/31	ΔΤ≦190℃	3 seconds max.	Air
GQM18/21		/ termination	
ERB11/21, ERF1D			
GRM32/43/55			
GNM		270°C max.	
LLA18/21/31	ΔΤ≦130℃	3 seconds max.	Air
LLM21/31		/ termination	
ERB32, ERF22			

*Applicable for both Pb-Sn and Lead Free Solder.

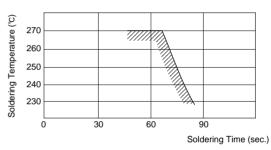
Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

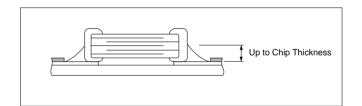
(2) For Microstrip Types


- Solder 1mm away from the ribbon terminal base, being careful that the solder tip does not directly contact the capacitor. Preheating is unnecessary.
- Complete soldering within 3 seconds with a soldering tip less than 270°C in temperature.

8. Washing


Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.


[Standard Conditions for Soldering Iron Temperature] Temperature (°C)

[Allowable Time and Temperature for Making Corrections with a Soldering Iron]

The accumulated soldering Time / temperature including reflow / flow soldering must be within the range shown above.

■ Rating

Die Bonding/Wire Bonding (GMA Series)

- 1. Die Bonding of Capacitors
- •Use the following materials Braze alloy:
 Au-Si (98/2) 400 to 420 degree C in N2 atmosphere
 Au-Sn (80/20) 300 to 320 degree C in N2 atmosphere
 Au-Ge (88/12) 380 to 400 degree C in N2 atmosphere
- Mounting
- (1) Control the temperature of the substrate so that it matches the temperature of the braze alloy.
- (2) Place braze alloy on substrate and place the capacitor on the alloy. Hold the capacitor and gently apply the load. Be sure to complete the

operation in 1 minute.

- 2. Wire Bonding
- •Wire

Gold wire:

20 micro m (0.0008 inch), 25 micro m (0.001 inch) diameter

- Bonding
- (1) Thermocompression, ultrasonic ball bonding.
- (2) Required stage temperature: 200 to 250 degree C
- (3) Required wedge or capillary weight: 0.5N to 2N.
- (4) Bond the capacitor and base substrate or other devices with gold wire.

■ Soldering and Mounting

1. PCB Design

(1) Notice for Pattern Forms

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

Pattern Forms

	Placing Close to Chassis	Placing of Chip Components and Leaded Components	Placing of Leaded Components after Chip Component	Lateral Mounting
Incorrect	Chassis Solder (ground) Electrode Pattern	Lead Wire	Soldering Iron Lead Wire	
Correct	Solder Resist	Solder Resist	Solder Resist	Solder Resist

Continued from the preceding page.

(2) Land Dimensions

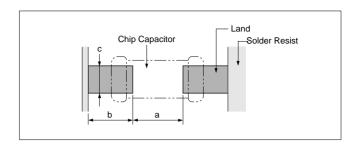
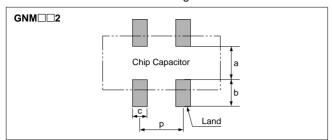


Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions (L×W)	a	b	С
GRM18 GQM18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
GRM21 GQM21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
GRM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4
LLL21	1.25×2.0	0.4-0.7	0.5-0.7	1.4-1.8
LLL31	1.6×3.2	0.6-1.0	0.8-0.9	2.6-2.8
ERA11	1.25×1.0	0.4-0.6	0.6-0.8	0.8-1.0
ERA21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.0
ERF1D	1.4×1.4	0.5-0.8	0.8-0.9	1.0-1.2

(in mm)

Table 2 Reflow Soldering Method


Dimensions Part Number	Dimensions (LXW)	a	b	С
GRM03 GJM03	0.6×0.3	0.2-0.3	0.2-0.35	0.2-0.4
GRM15 GJM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4-0.6
GRM18 GQM18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8
GRM21 GQM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1
GRM31	3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4
GRM32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3
GRM43	4.5×3.2	3.0-3.5	1.2-1.4	2.3-3.0
GRM55	5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8
LLL18	0.8×1.6	0.2-0.4	0.3-0.4	1.0-1.4
LLL21	1.25×2.0	0.4-0.6	0.3-0.5	1.4-1.8
LLL31	1.6×3.2	0.6-0.8	0.6-0.7	2.6-2.8
ERA11	1.25×1.0	0.4-0.6	0.6-0.8	0.8-1.0
ERA21	2.0×1.25	1.0-1.2	0.6-0.8	0.8-1.0
ERA32	3.2×2.5	2.2-2.5	0.8-1.0	1.9-2.3
ERF1D	1.4×1.4	0.4-0.8	0.6-0.8	1.0-1.2
ERF22	2.8×2.8	1.8-2.1	0.7-0.9	2.2-2.6

(in mm)

Continued from the preceding page.

GNM Series for reflow soldering method

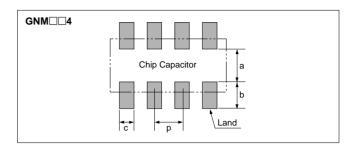
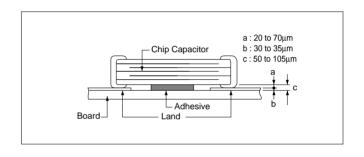


Table 3 GNM Series for Reflow Soldering Land Dimensions


Part Number	Dimensions (mm)					
Fait Number	L	W	а	b	С	р
GNM1M2	1.37	1.0	0.45 to 0.5	0.5 to 0.55	0.3 to 0.35	0.64±0.1
GNM212	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.4 to 0.5	1.0±0.1
GNM214	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.25 to 0.35	0.5±0.05
GNM314	3.2	1.6	0.8 to 1.0	0.7 to 0.9	0.3 to 0.4	0.8±0.05

2. Adhesive Application

- Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension C shown in the drawing below to obtain enough bonding strength. The chip's electrode thickness and land thickness must be taken into consideration.
- Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000Pa •s (500ps) min. (at 25℃)
- Adhesive Coverage*

<u> </u>	
Part Number	Adhesive Coverage*
GRM18	0.05mg min
GQM18	0.05mg min.
GRM21	0.4
GQM21	0.1mg min.
GRM31	0.15mg min.

*Nominal Value

3. Adhesive Curing

Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

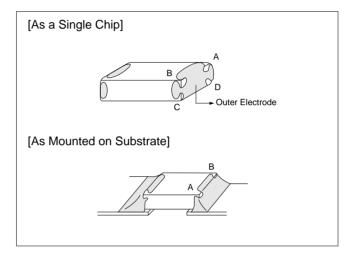
Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

Continued from the preceding page.

4. Flux Application


- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently

cleaned. Use flux with a halide content of 0.2wt% max. But do not use strong acidic flux.

Wash thoroughly because water soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

5. Flow Soldering

• Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.

(Reference Data 6. Thermal shock) (Reference Data 7. Solder heat resistance)

■ Others

1. Resin Coating When selecting resin materials, select those with low contraction.

2. Circuit Design These capacitors on this catalog are not safety recognized products

3. Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data here in are given in typical values, not guaranteed ratings.

1. Solderability

(1) Test Method

Subject the chip capacitor to the following conditions. Then apply flux (a ethanol solution of 25% rosin) to the chip and dip it in 230℃ eutectic solder for 2 seconds. Conditions:

Expose prepared at room temperature (for 6 months and 12 months, respectively)

Prepared at high temperature (for 100 hours at 85°C) Prepared left at high humidity (for 100 hours under 90%RH to 95%RH at 40℃)

(2) Test Samples

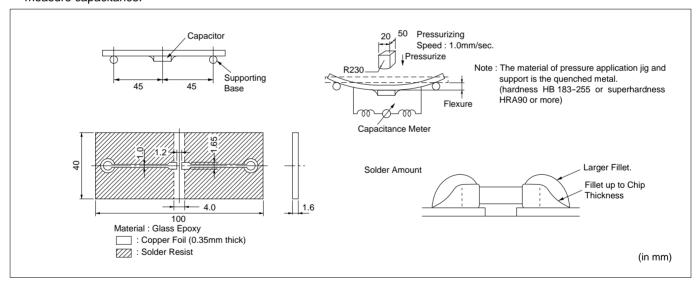
GRM21: Products for flow/reflow soldering.

(3) Acceptance Criteria

With a 60-power optical microscope, measure the surface area of the outer electrode that is covered with solder.

(4) Results

Refer to Table 1.


Table 1

Sample Initial	Initial State	Prepared at Roo	om Temperature	Prepared at High Temperature for	Prepared at High Humidity for 100 Hours at 90 to 95% RH and 40℃	
	Illitial State	6 months	12 months	100 Hours at 85℃		
GRM21 for flow/reflow soldering	95 to 100%	95 to 100%	95%	90 to 95%	95%	

2. Board Bending Strength for Solder Fillet Height

(1) Test Method

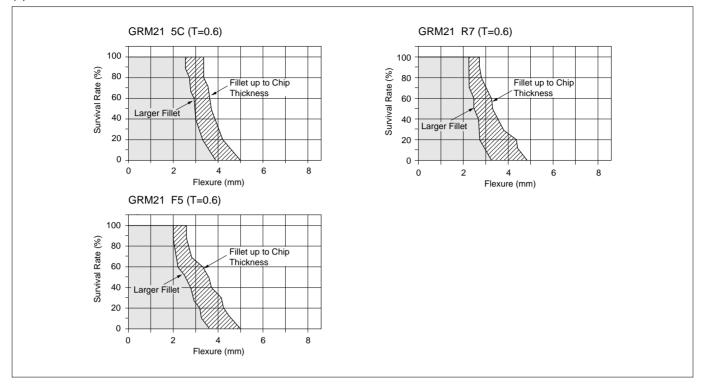
Solder the chip capacitor to the test PCB with the amount of solder paste necessary to achieve the fillet heights. Then bend the PCB using the method illustrated and measure capacitance.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

Products shall be determined to be defective if the change in capacitance has exceeded the values specified in Table 2.


Table 2

Characteristics	Change in Capacitance
5C	Within ±5% or ±0.5pF, whichever is greater
R7	Within ±12.5%
F5	Within ±20%

Continued from the preceding page.

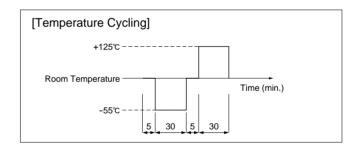
(4) Results

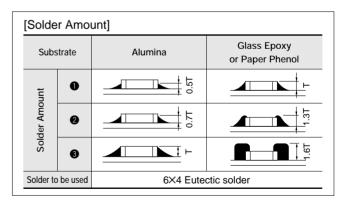
3. Temperature Cycling for Solder Fillet Height

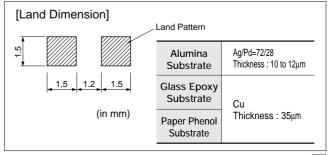
(1) Test Method

Solder the chips to the substrate various test fixtures using sufficient amounts of solder to achieve the required fillet height. Then subject the fixtures to the cycle illustrated below 200 times.

(1) Solder Amount


Alumina substrates are typically designed for reflow soldering.


Glass epoxy or paper phenol substrates are typically used for flow soldering.

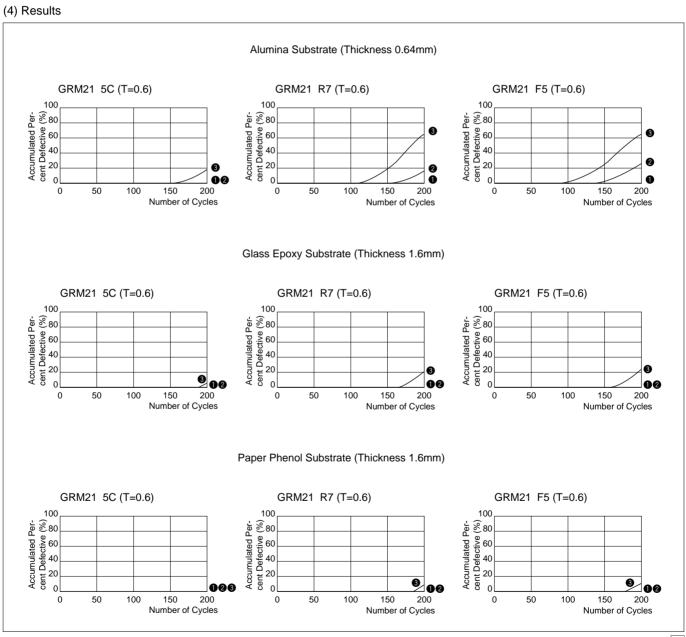

② Material

Alumina (Thickness: 0.64mm) Glass epoxy (Thickness: 1.64mm) Paper phenol (Thickness: 1.64mm)

(3) Land Dimension

Continued from the preceding page.

(2) Test Samples

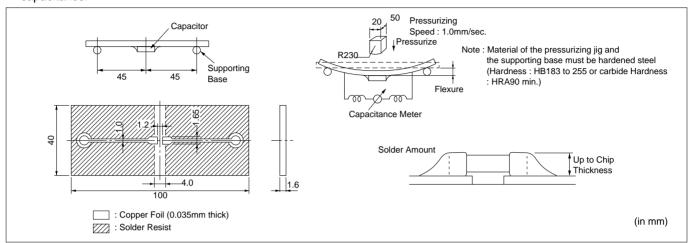

GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

Products are determined to be defective if the change in capacitance has exceeded the values specified in Table 3.

Table 3

Characteristics	Change in Capacitance	
5C	Within ±2.5% or ±0.25pF, whichever is greater	
R7	Within ±7.5%	
F5	Within ±20%	



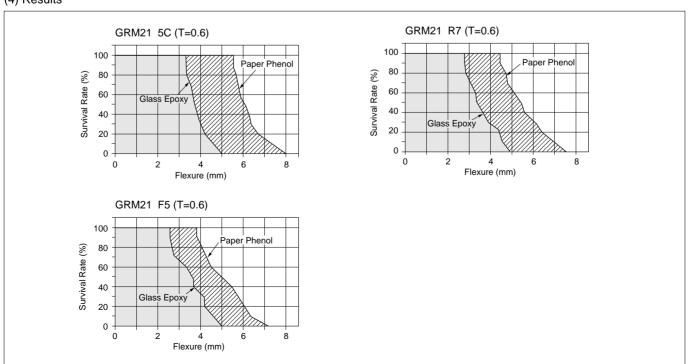
Continued from the preceding page.

4. Board Bending Strength for Board Material

(1) Test Method

Solder the chip to the test board. Then bend the board using the method illustrated below, to measure capacitance.

(2) Test Samples GRM21 5C/R7/F5 Characteristics T=0.6mm typical


(3) Acceptance Criteria

Products should be determined to be defective if the change in capacitance has exceeded the values specified in Table 4.

Table 4

Characteristics	Change in Capacitance
5C	Within ±5% or ±0.5pF, whichever is greater
R7	Within ±12.5%
F5	Within ±20%

(4) Results

Continued from the preceding page.

5. Break Strength

(1) Test Method

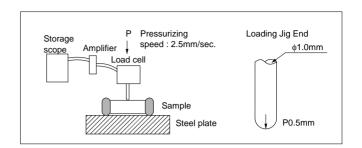
Place the chip on a steel plate as illustrated on the right. Increase load applied to a point near the center of the test sample.

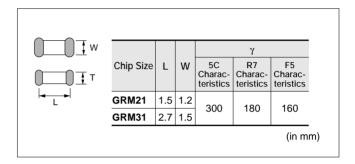
(2) Test Samples

GRM21 5C/R7/F5 Characteristics GRM31 5C/R7/F5 Characteristics

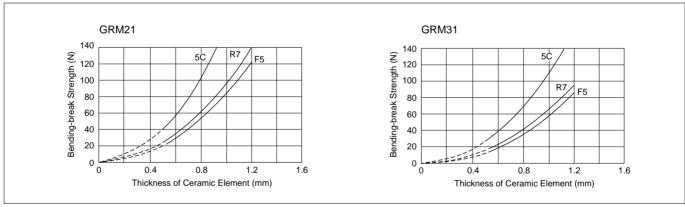
(3) Acceptance Criteria

Define the load that has caused the chip to break or crack, as the bending force.


(4) Explanation


Break strength, P, is proportionate to the square of the thickness of the ceramic element and is expressed as a curve of secondary degree.

The formula is:

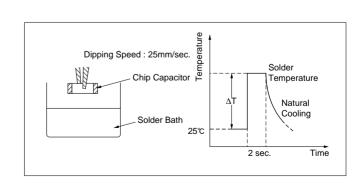

$$P = \frac{2\gamma WT^2}{3L} \quad (N)$$

W: Width of ceramic element (mm) T: Thickness of element (mm) L: Distance between fulcrums (mm) γ: Bending stress (N/mm²)

(5) Results

6. Thermal Shock

(1) Test method

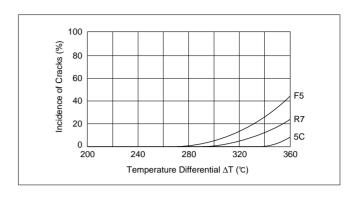

After applying flux (an ethanol solution of 25% rosin), dip the chip in a solder bath (6X4 eutectic solder) in accordance with the following conditions:

(2) Test samples

GRM21 5C/R7/F5 Characteristics T=0.6mm typical

(3) Acceptance criteria

Visually inspect the test sample with a 60-power optical microscope. Chips exhibiting breaks or cracks shall be determined to be defective.



Continued from the preceding page.

(4) Results

7. Solder Heat Resistance

(1) Test Method

① Reflow soldering:

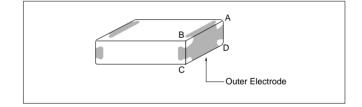
Apply about 300 µm of solder paste over the alumina substrate. After reflow soldering, remove the chip and check for leaching that may have occurred on the outer electrode.

2 Flow soldering:

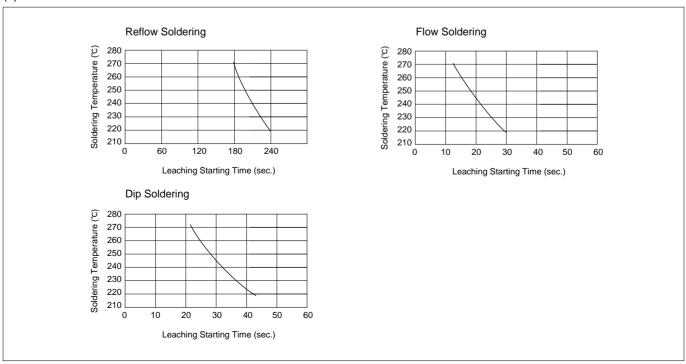
After dipping the test sample with a pair of tweezers in wave solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

(2) Test samples

GRM21: For flow/reflow soldering T=0.6mm

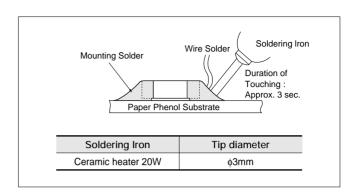

(3) Acceptance criteria

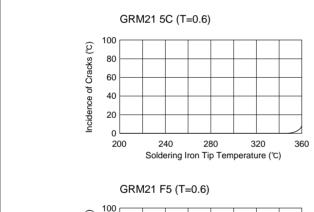
The starting time of leaching should be defined as the time when the outer electrode has lost 25% of the total edge length of A-B-C-D as illustrated:

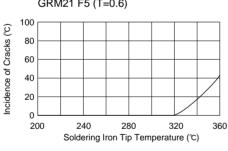

3 Dip soldering:

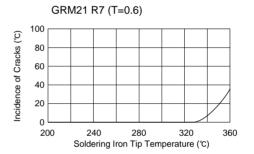
After dipping the test sample with a pair of tweezers in static solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

4 Flux to be used: An ethanol solution of 25% rosin.


(4) Results


- Continued from the preceding page.
- Thermal Shock when Making Corrections with a Soldering Iron
- (1) Test Method

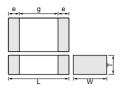

Apply a soldering iron meeting the conditions below to the soldered joint of a chip that has been soldered to a paper phenol board, while supplying wire solder. (Note: the soldering iron tip should not directly touch the ceramic element of the chip.)


- (2) Test Samples
 GRM21 5C/R7/F5 Characteristics T=0.6mm
- (3) Acceptance Criteria for Defects Observe the appearance of the test sample with a 60-power optical microscope. Those units displaying any breaks or cracks are determined to be defective.

(4) Results

Chip Monolithic Ceramic Capacitors

Medium Voltage Low Dissipation Factor


■ Features

- 1. Murata's original internal electrode structure realizes high flash-over voltage.
- A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels.
- 3. Sn-plated external electrodes realize good solderability.
- 4. Use the GRM31 type with flow or reflow soldering, and other types with reflow soldering only.
- 5. Low-loss and suitable for high frequency circuits.

Applications

- Ideal for use on high frequency pulse circuits such as snubber circuits for switching power supplies, DC-DC converters, ballasts (inverter fluorescent lamps), etc.
- 2. Ideal for use as the ballast in liquid crystal back lighting inverters.
- Please contact our sales representatives or engineers before using our products for other applications not specified above.

Part Number	Dimensions (mm)							
Part Number	L	W	Т	e min.	g min.			
GRM31A	3.2 ±0.2	1.6 ±0.2	1.0 +0,-0.3					
GRM31B	3.2 ±0.2	1.0 ±0.2	1.25 +0,-0.3		1.5*			
GRM32A	3.2 ±0.2	2.5 ±0.2	1.0 +0,-0.3	0.3	1.5			
GRM32B	3.2 ±0.2	2.5 ±0.2	1.25 +0,-0.3	0.5				
GRM42A	4.5 ±0.3	2.0 ±0.2	1.0 +0,-0.3		29			
GRM42D	4.5 ±0.5	2.0 ±0.2	2.0 ±0.3		2.9			

^{*} GRM31A7U3D, GRM32A7U3D, GRM32B7U3D : 1.8mm min.

SL/U2J Characteristics

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31A7U2J100JW31D	DC630	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J150JW31D	DC630	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J220JW31D	DC630	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J330JW31D	DC630	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J470JW31D	DC630	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J680JW31D	DC630	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J101JW31D	DC630	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J151JW31D	DC630	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J221JW31D	DC630	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J331JW31D	DC630	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J471JW31D	DC630	U2J (EIA)	470 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J681JW31D	DC630	U2J (EIA)	680 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J102JW31D	DC630	U2J (EIA)	1000 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM32A7U2J152JW31D	DC630	U2J (EIA)	1500 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM32A7U2J222JW31D	DC630	U2J (EIA)	2200 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM31A7U3A100JW31D	DC1000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A150JW31D	DC1000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A220JW31D	DC1000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A330JW31D	DC1000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A470JW31D	DC1000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A680JW31D	DC1000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A101JW31D	DC1000	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A151JW31D	DC1000	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A221JW31D	DC1000	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A331JW31D	DC1000	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31B7U3A471JW31L	DC1000	U2J (EIA)	470 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31A7U3D100JW31D	DC2000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D120JW31D	DC2000	U2J (EIA)	12 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D150JW31D	DC2000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D180JW31D	DC2000	U2J (EIA)	18 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D220JW31D	DC2000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D270JW31D	DC2000	U2J (EIA)	27 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D330JW31D	DC2000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D390JW31D	DC2000	U2J (EIA)	39 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D470JW31D	DC2000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D560JW31D	DC2000	U2J (EIA)	56 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D680JW31D	DC2000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM32A7U3D820JW31D	DC2000	U2J (EIA)	82 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D101JW31D	DC2000	U2J (EIA)	100 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D121JW31D	DC2000	U2J (EIA)	120 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D151JW31D	DC2000	U2J (EIA)	150 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32B7U3D181JW31L	DC2000	U2J (EIA)	180 ±5%	3.2	2.5	1.25	1.8	0.3 min.
GRM32B7U3D221JW31L	DC2000	U2J (EIA)	220 ±5%	3.2	2.5	1.25	1.8	0.3 min.
GRM42D1X3F100JY02L	DC3150	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F120JY02L	DC3150	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F150JY02L	DC3150	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F180JY02L	DC3150	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F220JY02L	DC3150	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42A7U3F270JW31L	DC3150	U2J (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F330JW31L	DC3150	U2J (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F390JW31L	DC3150	U2J (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F470JW31L	DC3150	U2J (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F560JW31L	DC3150	U2J (EIA)	56 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F680JW31L	DC3150	U2J (EIA)	68 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F820JW31L	DC3150	U2J (EIA)	82 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F101JW31L	DC3150	U2J (EIA)	100 ±5%	4.5	2.0	1.0	2.9	0.3 min.

Application Specific Products, C0G Characteristics

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM42A5C3F050DW01L	DC3150	C0G (EIA)	5.0 ±0.5pF	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F100JW01L	DC3150	C0G (EIA)	10 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F120JW01L	DC3150	C0G (EIA)	12 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F150JW01L	DC3150	C0G (EIA)	15 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F180JW01L	DC3150	C0G (EIA)	18 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F220JW01L	DC3150	C0G (EIA)	22 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F270JW01L	DC3150	C0G (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F330JW01L	DC3150	C0G (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F390JW01L	DC3150	COG (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F470JW01L	DC3150	COG (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.

Please contact us in case that the COG char. DC3150V items are considered to use for the application which is not LCD back lighting inverters circuit.

No.	Ite	em	Specifications	Test Method		
1	Operating Temperatu	ure Range	−55 to +125°C			
2	Appearan	nce	No defects or abnormalities	Visual inspection		
3	Dimensio	ns	Within the specified dimension	Using calipers		
4	Dielectric	: Strength	No defects or abnormalities	No failure should be observed when voltage in Table is applied between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA. Rated voltage DC630V 150% of the rated voltage DC1kV, DC2kV DC3.15kV DC4095V		
5	Insulation Resistance (I.R.)		More than 10,000M Ω	The insulation resistance should be measured with DC and within 60±5 sec. of charging.	500±50V	
6	Capacitar	nce	Within the specified tolerance	The capacitance/Q should be measured at 20°C at the and voltage shown as follows.	frequency	
7	Q		C0G/U2J char. : 1,000 min. SL char. : 400+20C*1 min.	Capacitance Frequency Volta C<1,000pF	/ (r.m.s.)	
8	Capacitance Temperature Characteristics		Temp. Coefficient C0G char.: 0±30ppm/°C (Temp. Range: +25 to +125°C) 0+30, -72ppm/°C (Temp. Range: -55 to +25°C) U2J char.: -750±120 ppm/°C (Temp. Range: +25 to +125°C) -750+120, -347 ppm/°C (Temp. Range: -55 to +25°C) SL char.: +350 to −1000 ppm/°C (Temp. Range: +20 to +85°C)	The temperature coefficient is determined using the cameasured in step 3 as a reference. When cycling the temperature sequentially from step 1 (SL char.: +20 to +85°C) the capacitance should be we specified tolerance for the temperature coefficient. Step Temperature (°C) 1 25±2 (20±2 for SL char.) 2 Min. Operating Temp.±3 3 25±2 (20±2 for SL char.) 4 Max. Operating Temp.±2 5 25±2 (20±2 for SL char.)	through 5 vithin the	
9	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy boa in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or usi reflow method and should be conducted with care so the soldering is uniform and free of defects such as heat significant of the soldering is uniform. The soldering is uniform and free of defects such as heat significant of the soldering is uniform. The soldering is uniform and free of defects such as heat significant of the soldering is uniform. The soldering is uniform and free of defects such as heat significant of the soldering is uniform. The soldering is uniform and free of defects such as heat significant of the soldering is uniform. The soldering is uniform and free of defects such as heat significant of the soldering is uniform.	ng the	
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmon	ic motion	
10	Vibration Resistance	Q	C0G/U2J char. : 1,000 min. SL char. : 400+20C*1 min.	having a total amplitude of 1.5mm, the frequency being uniformly between the approximate limits of 10 and 55 frequency range, from 10 to 55Hz and return to 10Hz, traversed in approximately 1 min. This motion should be for a period of 2 hrs. in each 3 mutually perpendicular of (total of 6 hrs.). Solder resist	Hz. The should be be applied	

^{*1 &}quot;C" expresses nominal capacitance value (pF).

Ŋ	Continued fr	om the prec	eding page.	ge.								
No.	lte	em		Sį	oecification	ıs				Test Method		
11	Deflection	n	LXW (mm) 3.2×1.6 3.2×2.5 4.5×2.0	a 2.2 2.2 3.5	t	d occur.	d 1.0	Solder the capacitor to the testing jig (glass epoxy board) sin Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that it soldering is uniform and free of defects such as heat shoot should be soldering is uniform and free of defects such as heat shoot speed: 1.0mm/s Pressurize Pressurize Flexure=1 Capacitance meter Fig. 3			n Fig. 3. n iron or using the atth care so that the ch as heat shock. gmm/s	
12	Solderab Terminati	•		75% of the terminations are to be soldered evenly and continuously.					Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 2±0.5 sec. at 235±5°C. Immersing speed: 25±2.5mm/s			
		Appearance	No marking def	ects						apacitor at 120 to 150℃* for 1		
	Resistance	Capacitance Change	Within ±2.5% C0G/U2J char.	· 1 000 mir				10±	1 sec. Let	capacitor in eutectic solder so sit at *1room condition for 24 peed: 25±2.5mm/s		
13	to Soldering Heat	Q	SL char. : 400+	,				*Pr	eheating fo	or more than 3.2×2.5mm		
	пеаі	I.R.	More than 10,0	ΩΜ00					Step	Temperature	Time	
		Dielectric Strength	In accordance	with item No	0.4			_	1 2	100℃ to 120℃ 170℃ to 200℃	1 min. 1 min.	
		Appearance Capacitance	No marking def	ects				in F	ig. 4 using	tor to the supporting jig (glas- a eutectic solder. cycles according to the 4 he		
		Change Q	C0G char. : 1,0 U2J char. : 500						following to sit for 24± Step	able. 2 hrs. at *1room condition, th Temperature (°C)	en measure.	
			SL char. : 400+	-20C* ² min.				_ =	1	Min. Operating Temp.±3	30±3	
14	Temperature Cycle	I.R.	More than 10,0	00ΜΩ				-	2 3 4	Room Temp. Max. Operating Temp.±2 Room Temp.	2 to 3 30±3 2 to 3	
		Dielectric Strength In accordance with item No.4					Solution Fig. 4	der resist				
		Appearance	No marking def	ects								
	Humidity	Capacitance Change	Within ±5.0%							tor sit at 40±2°C and relative	humidity of 90 to 95%	
15	(Steady State)	Q	C0G/U2J char. SL char. : 275+		ı.				500 ^{±2} 5 hr nove and I	s. et sit for 24±2 hrs. at *¹room	condition, then	
	State)	I.R.	More than 1,00	0ΜΩ				mea	asure.			
		Dielectric Strength	In accordance	with item No	0.4							
		Appearance	No marking def	ects								
		Capacitance Change	Within ±3.0%							f the rated voltage for 1,000 perature ±3°C.	+48 hrs. at maximum	
16	Life	Q	C0G/U2J char. SL char. : 275+	-5/2C*2 min	ı.			Ren		perature ±3 C. et sit for 24±2 hrs. at *1room	condition, then	
		I.R.	More than 1,00	ΩΜ0				The	charge/di	scharge current is less than t	50mA.	
		Dielectric Strength	In accordance	with item No	0.4							

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Chip Monolithic Ceramic Capacitors

Medium Voltage High Capacitance for General-Use

■ Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage
- 2. Sn-plated external electrodes realizes good solderability.
- 3. Use the GRM18/21/31 types with flow or reflow soldering, and other types with reflow soldering only.

■ Applications

- 1. Ideal for use as a hot-cold coupling for DC-DC converter.
- 2. Ideal for use on line filters and ringer detectors for telephones, facsimiles and modems.
- 3. Ideal for use on diode-snubber circuits for switching power supplies.

	•	e e g e e e e e e e e e e e e e e e e e						
Part Number		Din	nensions (mm	1)				
	L	W	T	е	g min.			
GRM188	1.6 ±0.1	0.8 ± 0.1	0.8 ±0.1	0.2 to 0.5	0.4			
GRM21A	2.0 ±0.2	1.25 ±0.2	1.0 +0,-0.3		0.7			
GRM21B	2.0 ±0.2		1.25 ±0.2		0.7			
GRM31B	3.2 ±0.2	1.6 ±0.2	1.25 +0,-0.3					
GRM31C	3.2 <u>1</u> 0.2	1.0 ±0.2	1.6 ±0.2		1.2			
GRM32Q	3.2 ±0.3	2.5 ±0.2	1.5 +0,-0.3	0.3 min.	1.2			
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 +0,-0.3					
GRM43Q	4 E ±0 4	2 2 +0 2	1.5 +0,-0.3		2.2			
GRM43D	4.5 ±0.4	3.2 ±0.3	2.0 +0,-0.3		2.2			
GRM55D	5.7 ±0.4	5.0 ±0.4	2.0 +0,-0.3		3.2*			
* GRM55DR73	* GRM55DR73A : 2.5mm min.							

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM188R72E221KW07D	DC250	X7R (EIA)	220pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E331KW07D	DC250	X7R (EIA)	330pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E471KW07D	DC250	X7R (EIA)	470pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E681KW07D	DC250	X7R (EIA)	680pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E102KW07D	DC250	X7R (EIA)	1000pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E102KW01D	DC250	X7R (EIA)	1000pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E152KW07D	DC250	X7R (EIA)	1500pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E152KW01D	DC250	X7R (EIA)	1500pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E222KW07D	DC250	X7R (EIA)	2200pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E222KW01D	DC250	X7R (EIA)	2200pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E332KW01D	DC250	X7R (EIA)	3300pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E472KW01D	DC250	X7R (EIA)	4700pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E682KW01D	DC250	X7R (EIA)	6800pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21BR72E103KW03L	DC250	X7R (EIA)	10000pF ±10%	2.0	1.25	1.25	0.7	0.3 min.
GRM31BR72E153KW01L	DC250	X7R (EIA)	15000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72E223KW01L	DC250	X7R (EIA)	22000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72E333KW03L	DC250	X7R (EIA)	33000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31CR72E473KW03L	DC250	X7R (EIA)	47000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31BR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM31CR72E104KW03L	DC250	X7R (EIA)	0.10μF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32DR72E104KW01L	DC250	X7R (EIA)	0.10μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72E154KW01L	DC250	X7R (EIA)	0.15μF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM32DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM43DR72E474KW01L	DC250	X7R (EIA)	0.47μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E474KW01L	DC250	X7R (EIA)	0.47μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72E105KW01L	DC250	X7R (EIA)	1.0μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR72J102KW01L	DC630	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J152KW01L	DC630	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.

Continued from the preceding page.

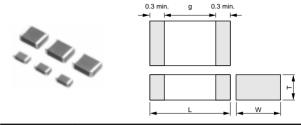
Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31BR72J222KW01L	DC630	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J332KW01L	DC630	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J472KW01L	DC630	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J682KW01L	DC630	X7R (EIA)	6800pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J103KW01L	DC630	X7R (EIA)	10000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72J153KW03L	DC630	X7R (EIA)	15000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32QR72J223KW01L	DC630	X7R (EIA)	22000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR72J333KW01L	DC630	X7R (EIA)	33000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR72J473KW01L	DC630	X7R (EIA)	47000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72J683KW01L	DC630	X7R (EIA)	68000pF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM43DR72J104KW01L	DC630	X7R (EIA)	0.10μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72J154KW01L	DC630	X7R (EIA)	0.15μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72J224KW01L	DC630	X7R (EIA)	0.22μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR73A102KW01L	DC1000	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A152KW01L	DC1000	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A222KW01L	DC1000	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A332KW01L	DC1000	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A472KW01L	DC1000	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR73A682KW01L	DC1000	X7R (EIA)	6800pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32QR73A103KW01L	DC1000	X7R (EIA)	10000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR73A153KW01L	DC1000	X7R (EIA)	15000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR73A223KW01L	DC1000	X7R (EIA)	22000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR73A333KW01L	DC1000	X7R (EIA)	33000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR73A473KW01L	DC1000	X7R (EIA)	47000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR73A104KW01L	DC1000	X7R (EIA)	0.10μF ±10%	5.7	5.0	2.0	2.5	0.3 min.

No.	Ite	m	Specifications	Test Method			
1	Operating Temperatu	re Range	-55 to +125℃	_			
2	Appearan	се	No defects or abnormalities	Visual inspection			
3	Dimension	าร	Within the specified dimensions	Using calipers			
4	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 150% of the rated voltage (200% of the rated voltage in case of rated voltage: DC250V, 120% of the rated voltage in case of rated voltage: DC1kV) is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.			
5	Insulation R (I.R.)	esistance	C≥0.01μF : More than 100M Ω • μF C<0.01μF : More than 10,000M Ω	The insulation resistance should be measured with DC500±50V (DC250±50V in case of rated voltage : DC250V) and within 60±5 sec. of charging.			
6	Capacitar	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25℃ at a frequency of 1±0.2kHz and a voltage of AC1±0.2V (r.m.s.) •Pretreatment			
7	Dissipatio Factor (D.		0.025 max.	Perform a heat treatment at 150 ⁺² ₁₀ ℃ for 60±5 min. and then let sit for 24±2 hrs. at *room condition.			
8	Capacitance Temperature Characteristics		Cap. Change Within ±15% (Temp. Range : −55 to +125°C)	The range of capacitance change compared with the 25°C value within −55 to +125°C should be within the specified range. •Pretreatment Perform a heat treatment at 150 ± °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.			
9	Adhesive Strength of Termination No removal or		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N (5N : Size 1.6×0.8mm only), 10±1s Speed : 1.0mm/s Glass Epoxy Board			
		Annogranco	No defects or abnormalities	Fig. 1 Solder the capacitor to the test jig (glass epoxy board).			
		Appearance Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion			
10	Vibration Resistance	D.F.	0.025 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board			
	11 Deflection		No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3.			
11			LXW Dimension (mm) (mm) a b c d	The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s pressurize Pressurize Capacitance meter (in mm) Fig. 3			

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

7	Continued fr	rom the prec	eding page.						
No.	Ite	em	Specifications		Test Method				
12	Solderab Terminati		75% of the terminations are to be soldered evenly and continuously.	rosin (JIS-K-5 Immerse in eu	capacitor in a solution of ethano 902) (25% rosin in weight prop utectic solder solution for 2±0.5 eed: 25±2.5mm/s	ortion).			
		Appearance	No marking defects		apacitor at 120 to 150℃* for 1 r				
		Capacitance Change	Within ±10%	10±1 sec. Let	Immerse the capacitor in eutectic solder solution at 260±5°C for 10±1 sec. Let sit at *room condition for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s				
	Resistance	D.F.	0.025 max.	Pretreatmen					
13		I.R.	C ≥0.01 μ F : More than 100M Ω • μ F C<0.01 μ F : More than 10,000M Ω	Perform a heat treatment at 150±18°C for 60±5 min. and to let sit for 24±2 hrs. at *room condition.					
				*Preheating f	or more than 3.2×2.5mm				
		Dielectric	In accordance with item No.4	Step 1	Temperature 100℃ to 120℃	Time 1 min.			
		Strength		2	170°C to 200°C	1 min.			
		Appearance	No marking defects	Fix the capaci	tor to the supporting jig (glass	epoxy board) shown			
		Capacitance		in Fig. 4 using	a eutectic solder.				
		Change	Within ±7.5%	Perform the 5 cycles according to the 4 heat treatments listed the following table.					
		D.F.	0.025 max.	_	able. :2 hrs. at *room condition, then	measure.			
			C≧0.01μF : More than 100MΩ • μF	Step	Temperature (°C)	Time (min.)			
		I.R.	C<0.01μF : More than 10,000M Ω	1	Min. Operating Temp.±3	30±3			
				3	Room Temp.	2 to 3 30±3			
				4	Max. Operating Temp.±2 Room Temp.	2 to 3			
14	Temperature			Pretreatmen					
	Cycle	Dielectric Strength	In accordance with item No.4	Perform a heat treatment at 150 [±] ₁ 8°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition. Solder resist Glass Epoxy Board					
					Fig. 4				
		Appearance	No marking defects						
		Capacitance Change	Within ±15%	Let the capacitor sit at $40\pm2^{\circ}$ C and relative humidity of 90 to 95% for $500\pm^{20}$ hrs.					
15	Humidity	D.F.	0.05 max.	Remove and measure.	let sit for 24±2 hrs. at *room co	ndition, then			
15	(Steady State)	I.R.	C≧0.01μF : More than 10MΩ • μF	•Pretreatmen					
			C<0.01μF : More than 1,000MΩ		eat treatment at $150 \pm_{1} \% \%$ for $6 \pm_{1} \%$ for $6 \pm_{1} \%$	60±5 min. and then			
		Dielectric Strength	In accordance with item No.4	iet sit ioi 24±	ez nis. at 100m condition.				
		Appearance	No marking defects		f the rated voltage (150% of th				
		Capacitance Change	Within ±15% (rated voltage : DC250V, DC630V) Within ±20% (rated voltage : DC1kV)	case of rated	voltage: DC250V, 110% of the voltage: DC1kV) for 1,000 = 48	hrs. at maximum			
16	Life	D.F.	0.05 max.		perature ±3℃. Remove and le on, then measure.	ı əil i∪i ∠4 ±∠ NFS. ƏT			
	20	I.R.	C≥0.01μF : More than 10MΩ • μF C<0.01μF : More than 1,000MΩ	The charge/di •Pretreatmen	scharge current is less than 50 t				
		Dielectric Strength	In accordance with item No.4		Itage for 60±5 min. at test tem let sit for 24±2 hrs. at *room of				
		Appearance	No marking defects						
	Humidity Loading	Capacitance Change	Within ±15%	95% for 500 ±		•			
17	(Application :	D.F.	0.05 max.	Remove and measure.	let sit for 24±2 hrs. at *room co	ndition, then			
17	DC250V, DC630V	I.R.	C≥0.01μF : More than $10M\Omega \bullet \mu F$ C<0.01μF : More than $1,000M\Omega$	•Pretreatmen	t Itage for 60±5 min. at test tem	perature.			
	item)	Dielectric Strength	In accordance with item No.4	Remove and	let sit for 24±2 hrs. at *room of	ondition.			

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa


Chip Monolithic Ceramic Capacitors

Only for Information Devices/Tip & Ring

■ Features

- 1. These items are designed specifically for telecommunication devices (IEEE802.3) in Ethernet LAN.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering.
- 5. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Don't Numer how	Dimensions (mm)						
Part Number	L	W	T	g min.			
GR442Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3				
GR443D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	2.5			
GR443Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3				

■ Applications

Ideal for use on telecommunication devices in Ethernet LAN.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR442QR73D101KW01L	DC2000	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D121KW01L	DC2000	X7R (EIA)	120 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D151KW01L	DC2000	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D181KW01L	DC2000	X7R (EIA)	180 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D221KW01L	DC2000	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D271KW01L	DC2000	X7R (EIA)	270 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D331KW01L	DC2000	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D391KW01L	DC2000	X7R (EIA)	390 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D471KW01L	DC2000	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D561KW01L	DC2000	X7R (EIA)	560 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D681KW01L	DC2000	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D821KW01L	DC2000	X7R (EIA)	820 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D102KW01L	DC2000	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D122KW01L	DC2000	X7R (EIA)	1200 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D152KW01L	DC2000	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR443QR73D182KW01L	DC2000	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D222KW01L	DC2000	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D272KW01L	DC2000	X7R (EIA)	2700 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D332KW01L	DC2000	X7R (EIA)	3300 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D392KW01L	DC2000	X7R (EIA)	3900 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443DR73D472KW01L	DC2000	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.

No	. Ite	em	Specifications		Test Method			
1	Operating Temperatu	ıre Range	−55 to +125°C		_			
2	Appearar	nce	No defects or abnormalities	Visual inspection				
3	Dimensio	ns	Within the specified dimensions	Using calipers				
4	Dielectric	Strength	No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations, provided the charge/discharge current is less than 50mA. Rated voltage Test Voltage Time				
				DC2kV	120% of the rated voltage AC1500V (r.m.s.)	60±1 sec. 60±1 sec.		
5	Pulse Vol	tage	No self healing break downs or flash-overs have taken place in the capacitor.	10 impulse of altern (5 impulse for each The interval betwee Applied Voltage : 2.	n impulse is 60 sec.			
6	Insulation I	Resistance	More than $6{,}000M\Omega$	The insulation resist and within 60±5 sec	ance should be measured wit c. of charging.	h DC500±50V		
7	Capacita	nce	Within the specified tolerance	The capacitance/D.l of 1±0.2kHz and a Pretreatment	at a frequency			
8	Dissipation Factor (D		0.025 max.	Perform a heat trea	atment at 150^{+0}_{-10} °C for 60 ± 5 at *room condition.	50^{+0}_{-10} °C for 60 ± 5 min. and then condition.		
9	Capacitance Temperature Characteristics		Cap. Change within ±15% (Temp. Range : −55 to +125°C)	The range of capacitance change compared with the 25°C v within the specified range. • Pretreatment Perform a heat treatment at 150 ±9°°C for 60±5 min. and let sit for 24±2 hrs. at *room condition.				
10	O Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epox in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arror The soldering should be done either with an iron reflow method and should be conducted with car soldering is uniform and free of defects such as I		or using the eso that the eat shock.		
		Annogranco	No defects or abnormalities	Solder the capacitor	Fig. 1 to the test jig (glass epoxy bo	oard)		
		Appearance Canacitance	Within the specified tolerance	The capacitor shoul	d be subjected to a simple ha	rmonic motion		
11	Vibration Resistance	on		having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Glass Epoxy Board				

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page

\overline{A}	Continued fr	om the pred	eding page.								
No.	Ite	em		Specifications				Test Method			
12	2 Deflection			, b ,	4.5 Q t:1.6	Solder the capacitor to the testing jig (glass epoxy boar in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using reflow method and should be conducted with care so the soldering is uniform and free of defects such as heat should be conducted with care so the soldering is uniform and free of defects such as heat should be conducted with care so the soldering is uniform and free of defects such as heat should be conducted with care so the soldering is uniform and free of defects such as heat should be conducted with care so the soldering is uniform and free of defects such as heat should be conducted with care so the soldering is uniform.			Fig. 3. iron or using the n care so that the n as heat shock.		
13	Solderab Terminati		75% of the termination	ons are to be soldered	evenly and continuc	usly.	Immerse the capacitor in a solution of ethanol (JIS-K-rosin (JIS-K-5902) (25% rosin in weight proportion).				
		Appearance	No marking defects	i			Preheat the ca	apacitor as table.			
		Capacitance Change D.F.	Within ±10% 0.025 max.				Immerse the capacitor in eutectic solder solution at 260±5°C for 10±1 sec. Let sit at *room condition for 24±2 hrs., then measure •Immersing speed: 25±2.5mm/s •Pretreatment				
	Resistance	I.R.	More than 1.000MΩ)				eat treatment at 150±₁8℃ for	60±5 min. and then		
14	to Soldering Heat	1.10.	Wore than 1,000Ws2				let sit for 24±	2 hrs. at *room condition.			
	riodi	Dielectric Strength	In accordance with item No.4			*Preheating Step 1 2	Temperature 100°C to 120°C 170°C to 200°C	Time 1 min. 1 min.			
		Appearance	No marking defects				Fix the capaci	tor to the supporting jig (glass	epoxy board) shown		
		Capacitance Change	Within ±15%				in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table.				
		D.F.	0.05 max.				Let sit for 24±2 hrs. at *room condition, then measure.				
		I.R.	More than 3,000MΩ	2			Step	Temperature (°C)	Time (min.)		
							1 2	Min. Operating Temp.±3 Room Temp.	30±3 2 to 3		
							3	Max. Operating Temp.±2	30±3		
	Tomporaturo						4	Room Temp.	2 to 3		
15	Temperature Cycle	Dielectric Strength	In accordance with item No.4				Perform a heat treatment at 150±18 ℃ for 60±5 min. and then let sit for 24±2 hrs. at *room condition.				
		Appearance	No marking defects								
	Humidity	Capacitance Change	Within ±15%				for 500 ±24 hi	itor sit at 40±2℃ and relative h rs. let sit for 24±2 hrs. at *room co	•		
16	,	D.F.	0.05 max.				measure.		uion		
	State)	I.R.	More than 1,000MΩ	2			Pretreatmen		60-15 min		
		Dielectric Strength	In accordance with i	item No.4			Perform a heat treatment at $150^{+}_{-1}^{0}$ °C for 60 ± 5 min. and then let sit for 24 ±2 hrs. at *room condition.				

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page.

No.	Item		Specifications	Test Method				
		Appearance	No marking defects					
		Capacitance Change	Within ±20%	Apply 110% of the rated voltage for 1,000 ±48 hrs. at maximum operating temperature ±3°C. Remove and let sit for 24 ±2 hrs. at *room condition, then measure.				
17	Life	D.F.	0.05 max.	The charge/discharge current is less than 50mA.				
		I.R.	More than $2,000M\Omega$	Pretreatment Apply test voltage for 60±5 min. at test temperature.				
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.				

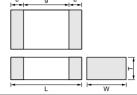
^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Chip Monolithic Ceramic Capacitors

AC250V (r.m.s.) Type (Which Meet Japanese Law)

■ Features

- 1. Chip monolithic ceramic capacitor for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering.
- 5. Capacitance 0.01 to 0.1 uF for connecting lines and 470 to 4700 pF for connecting lines to earth.


■ Applications

Noise suppression filters for switching power supplies, telephones, facsimiles, modems.

■ Reference standard

GA2 series obtains no safety approval. This series is based on JIS C 5102, JIS C 5150, and the standards of the electrical appliance and material safety law of Japan (separated table 4).

			_	•••				
Part Number	Dimensions (mm)							
Part Number	L	W	Т	e min.	g min.			
GA242Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3					
GA243D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	0.3	2.5			
GA243Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3	0.3	2.5			
GA255D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3					

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA242QR7E2471MW01L	AC250 (r.m.s.)	X7R (EIA)	470pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA242QR7E2102MW01L	AC250 (r.m.s.)	X7R (EIA)	1000pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA243QR7E2222MW01L	AC250 (r.m.s.)	X7R (EIA)	2200pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2332MW01L	AC250 (r.m.s.)	X7R (EIA)	3300pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2472MW01L	AC250 (r.m.s.)	X7R (EIA)	4700pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA243QR7E2103MW01L	AC250 (r.m.s.)	X7R (EIA)	10000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2223MW01L	AC250 (r.m.s.)	X7R (EIA)	22000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2473MW01L	AC250 (r.m.s.)	X7R (EIA)	47000pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA255DR7E2104MW01L	AC250 (r.m.s.)	X7R (EIA)	0.10μF ±20%	5.7	5.0	2.0	2.5	0.3 min.

No.	Ite	em	Specifications	Test Method				
1	Operating Temperatu	ıre Range	−55 to +125°C	-				
2	Appearan	nce	No defects or abnormalities	Visual inspection				
3	Dimensio	ns	Within the specified dimensions	Using calipers				
4	4 Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Nominal Capacitance Test voltage				
5	Insulation F (I.R.)	Resistance	More than $2{,}000M\Omega$	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.				
6	Capacitar	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at a frequency				
7	Dissipation Factor (D		0.025 max.	of 1±0.2kHz and a voltage of AC1±0.2V (r.m.s.) •Pretreatment Perform a heat treatment at 150±18° for 60±5 min. and then let sit for 24±2 hrs. at *room condition.				
8	Capacitan Temperati Character	ure	Cap. Change Within ±15% (Temp. Range : −55 to +125°C)	The range of capacitance change compared with the 25°C value within −55 to +125°C should be within the specified range. •Pretreatment Perform a heat treatment at 150±₁8°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.				
9	Discharge Test (Application: Nominal Capacitance C<10,000pF)	Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from the capacitor (Cd) charged at DC voltage of specified. R3 R1 Ct: Capacitor under test $Cd: 0.001 \mu F$ R1: $1,000\Omega$ R2: $100M\Omega$ R3: Surge resistance				
10	Adhesive Strength of Termination				No removal of the terminations or other defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig. 1		
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).				
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion				
11	Vibration Resistance	D.F.	0.025 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist				

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page

	Continued fr	om the prec	eding page.				
No.	Ite	em	Specifications		Test Method		
			No cracking or marking defects should occur.	in Fig. 2 using direction show with an iron or	acitor to the testing jig (glass a eutectic solder. Then apply n in Fig. 3. The soldering sho using the reflow method and	a force in the uld be done either should be conducted	
			04.5 04.5 1 04.5	as heat shock			
12	Deflection		Q Q Q Q Q Q Q Q Q Q		20 ⁵⁰ Pressurizing speed : 1.0m	m/s	
			L×W Dimension (mm)		Flexure	=1	
			4.5×2.0 3.5 7.0 2.4		Capacitance meter 45 45	(in mm)	
			4.5×3.2 3.5 7.0 3.7 1.0 5.7×5.0 4.5 8.0 5.6		Fig. 3		
			Fig. 2	Immerse the c	apacitor in a solution of ethan	ol (IIS-K-8101) and	
13	Solderab Terminati	-	75% of the terminations are to be soldered evenly and continuously.	rosin (JIS-K-59 Immerse in eu	202) (25% rosin in weight propertiectic solder solution for 2±0.9 sed : 25±2.5mm/s	portion).	
		Appearance	No marking defects				
	Humidity	Capacitance Change	Within ±15%	The capacitor should be subjected to 40±2°C, relative humidity of			
14	Insulation	D.F.	0.05 max.	90 to 98% for 8 hrs., and then removed in *room condition for 16 hrs. until 5 cycles.			
		I.R.	More than 1,000M Ω	- Ino. uniii o oyo			
		Dielectric Strength	In accordance with item No.4	Declaration of	and the second		
		Appearance	No marking defects		apacitor as table. apacitor in eutectic solder sol	ution at 260±5℃ for	
		Capacitance Change	Within ±10%	10±1 sec. Let sit at *room condition for 24±2 hrs., then measure. •Immersing speed : 25±2.5mm/s			
	Resistance	D.F.	0.025 max.				
15	to Soldering	I.R.	More than $2,000M\Omega$	Perform a heat treatment at 150 [±] ₁ % °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition. *Preheating			
	Heat						
		Dielectric Strength	In accordance with item No.4	Step	Temperature	Time	
		o a singan		1	100°C to 120°C 1 min. 170°C to 200°C 1 min.		
		Appearance	No marking defects		tor to the supporting jig (glass		
		Capacitance		in Fig. 4 using	a eutectic solder.		
		Change	Within ±15%	Perform the 5 the following to	cycles according to the 4 hear able.	t treatments listed in	
		D.F.	0.05 max.	Let sit for 24±	2 hrs. at *room condition, then		
		I.R.	More than 2,000M Ω	Step 1	Temperature (°C) Min. Operating Temp.±3	Time (min.) 30±3	
				2	Room Temp.	2 to 3	
				3	Max. Operating Temp.±2	30±3	
16	Temperature			4	Room Temp.	2 to 3	
10	Cycle	Dielectric			t at treatment at 150± ₁ %℃ for 2 hrs. at *room condition.	60±5 min. and then	
		Strength	In accordance with item No.4				
						er resist	
					Glass Epoxy Board		
± 11D			prature : 15 to 35°C. Relative humidity : 45 to 75%. Atmospheric n		Fig. 4		

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

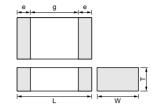
Continued from the preceding page.

No.	Ite	em	Specifications	Test Method				
		Appearance	No marking defects					
	Humidity	Capacitance Change	Within ±15%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500±2°d hrs. Remove and let sit for 24±2 hrs. at *room condition, then				
17	(Steady	D.F.	0.05 max.	measure.				
	State)	I.R.	More than 1,000M Ω	Pretreatment Perform a heat treatment at 150 ⁺ ½ ° C for 60±5 min, and then				
		Dielectric Strength	In accordance with item No.4	let sit for 24±2 hrs. at *room condition.				
		Appearance	No marking defects	Apply voltage and time as Table at 85±2°C. Remove and let sit				
		Capacitance Change	Within ±20%	for 24 ±2 hrs. at *room condition, then measure. The charge / discharge current is less than 50mA.				
		D.F.	0.05 max.	Nominal Capacitance Test Time Test voltage C≥10,000pF 1,000±48 hrs. AC300V (r.m.s.)				
18	Life	I.R.	More than 1,000M Ω	C<10,000pF 1,500 ⁺⁴⁸ / _o hrs. AC500V (r.m.s.) *				
		Dielectric Strength	In accordance with item No.4	 * Except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. •Pretreatment Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at *room condition. 				
		Appearance	No marking defects					
		Capacitance Change	Within ±15%	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±26 hrs. Remove and let sit for 24±2 hrs. at *room condition, then				
19	Humidity Loading	D.F.	0.05 max.	measure.				
	Louding	I.R.	More than 1,000M Ω	Pretreatment Apply test voltage for 60±5 min. at test temperature.				
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.				

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)


■ Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GC can be used as an X1-class and Y2-class capacitor, line-by-pass capacitor of UL1414.
- 5. +125 degree C guaranteed.
- 6. Only for reflow soldering.

■ Applications

- 1. Ideal for use as Y capacitor or X capacitor for various switching power supplies
- 2. Ideal for modem applications

Part Number		Dimensions (mm)							
Part Number	L	W	T	e min.	g min.				
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0				

■ Standard Recognition

	Standard No.	Status of R	Recognition	Rated
	Standard NO.	Type GB	Type GC	Voltage
UL	UL1414	_	0*	
BSI		_	0	
VDE	EN132400	0	0	AC250V
SEV	EN132400	0	0	(r.m.s.)
SEMKO		0	0	
EN132400 Class		X2	X1, Y2	

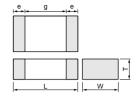
*: Line-By-Pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GC101KY02L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC151KY02L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC221KY02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC331KY02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	5.7	5.0	2.0	4.0	0.3 min.

122

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GD (IEC60384-14 Class Y3)


■ Features

- A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 2. The type GD can be used as a Y3-class capacitor.
- Available for equipment based on IEC/EN60950 and UL1950.
- 4. +125 degree C guaranteed.
- 5. Only for reflow soldering.
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers.
- 2. Ideal for use on line filters for information equipment.

Part Number	Dimensions (mm)							
Part Number	L	W	Т	e min.	g min.			
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.2*					
GA342Q	4.5 <u>1</u> 0.5	2.0 10.2	1.5 +0, -0.3	0.3	2.5			
GA343D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	0.3	2.5			
GA343Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3					

^{*} GA342D1X: 2.0±0.3

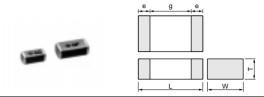
■ Standard Recognition

	Standard No.	Class	Status of Recognition Type GD	Rated Voltage
SEMKO	EN132400	Y3	0	AC250V (r.m.s.)
Application	ns			

Size	Switching power supplies	Communication network devices such as a modem	
4.5×3.2mm and under	-	0	

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGD100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD270JY02L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD330JY02L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD390JY02L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD470JY02L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD560JY02L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD680JY02L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD820JY02L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GD101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD221KW01L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD331KW01L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA343QR7GD182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343QR7GD222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343DR7GD472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.

Chip Monolithic Ceramic Capacitors


Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)

■ Features

- A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 2. The type GF can be used as a Y2-class capacitor.
- 3. Available for equipment based on IEC/EN60950 and UL1950. Besides, the GA352/355 types are available for equipment based on IEC/EN60065, UL1492, and UL6500.
- 4. +125 degree C guaranteed.
- 5. Only for reflow soldering.
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

■ Applications

- Ideal for use on line filters and couplings for DAA modems without transformers.
- 2. Ideal for use on line filters for information equipment.
- Ideal for use as Y capacitor or X capacitor for various switching power supplies. (GA352/355 types only)

Part Number	Dimensions (mm)					
Part Number	L	W	T	e min.	g min.	
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.2*	0.3	2.5	
GA342Q	4.5 ±0.5		1.5 +0, -0.3			
GA352Q		2.8 ±0.3	1.5 +0, -0.3			
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3		4.0	
GA355Q			1.5 +0, -0.3			

^{*} GA342D1X: 2.0±0.3

■ Standard Recognition

			Status of R			
	Standard	Class	Тур	Rated		
	No.	Class	Size : 4.5×2.0mm	Size : 5.7×2.8mm and over	Voltage	
UL	UL1414	X1, Y2	_	0	AC250V	
SEMKC	EN132400	Y2	0	0	(r.m.s.)	

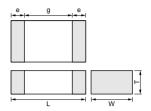
App	lica	tions

Size	Switching power supplies	Communication network devices such as a modem	
4.5×2.0mm	_	0	
5.7×2.8mm and over	0	0	

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGF100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF270JY02L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF330JY02L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF390JY02L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF470JY02L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF560JY02L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF680JY02L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF820JY02L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GF101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GF151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342DR7GF221KW02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA342DR7GF331KW02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA352QR7GF471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA355QR7GF182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF332KW01L	AC250 (r.m.s.)	X7R (EIA)	3300 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355DR7GF472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	5.7	5.0	2.0	4.0	0.3 min.

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GB (IEC60384-14 Class X2)


■ Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GB can be used as an X2-class capacitor.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

■ Applications

Ideal for use as X capacitor for various switching power supplies

Part Number	Dimensions (mm)					
Part Number	L	W	T	e min.	g min.	
GA355D	57404	5.7 ±0.4 5.0 ±0.4	2.0 ±0.3	0.3	4.0	
GA355X	3.7 ±0.4		2.7 ±0.3			

■ Standard Recognition

	Standard No.	Status of R	Rated	
	Standard NO.	Type GB	Type GC	Voltage
UL	UL1414	_	0*	
BSI		_	0	
VDE	EN132400	0	0	AC250V
SEV	EN132400	0	0	(r.m.s.)
SEMKO		0	0	
EN132400 Class		X2	X1, Y2	

*: Line-By-Pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GB103KY02L	AC250 (r.m.s.)	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB153KY02L	AC250 (r.m.s.)	X7R (EIA)	15000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB223KY02L	AC250 (r.m.s.)	X7R (EIA)	22000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355XR7GB333KY06L	AC250 (r.m.s.)	X7R (EIA)	33000 ±10%	5.7	5.0	2.7	4.0	0.3 min.

No.	Ite	em	Specifications	Test Method
1	Operating Temperatu	ure Range	−55 to +125°C	-
2	Appearar	nce	No defects or abnormalities	Visual inspection
3	Dimensio	ns	Within the specified dimensions	Using calipers
4	Dielectric	: Strength	No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Test voltage Type GB DC1075V Type GC/GD/GF AC1500V (r.m.s.)
5	Pulse Vol (Applicati GD/GF)		No self healing break downs or flash-overs have taken place in the capacitor.	10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage: 2.5kV zero to peak
6	Insulation F (I.R.)	Resistance	More than $6{,}000M\Omega$	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.
7	Capacita	nce	Within the specified tolerance	The capacitance/Q/D.F. should be measured at 20℃ at a
8	Dissipation Factor (D.F.)		Char. Specification X7R D.F.≤0.025 SL Q≥400+20C*² (C<30pF)	frequency of 1±0.2kHz (SL char.: 1±0.2MHz) and a voltage of AC1±0.2V (r.m.s.). •Pretreatment for X7R char. Perform a heat treatment at 150±18 °C for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.
9	Capacitance 7 Temperature Characteristics		Char. Capacitance Change X7R Within ±15% Temperature characteristic guarantee is −55 to +125°C Char. Temperature Coefficient SL +350 to -1000ppm/°C Temperature characteristic guarantee is +20 to +85°C	The range of capacitance change compared with the 25°C (SL char. : 20°C) value within -55 to $+125$ °C should be within the specified range. •Pretreatment for X7R char. Perform a heat treatment at 150^{\pm}_{-1} °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *1room condition.
		Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from
		I.R.	More than 1,000M Ω	the capacitor (Cd) charged at DC voltage of specified.
10	Discharge Test (Application: Type GC)	Dielectric Strength	In accordance with item No.4	R3 R1 Ct R2 R2
				Ct : Capacitor under test $Cd: 0.001 \mu F$ R1: 1,000 Ω R2: 100M Ω R3: Surge resistance
11	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig. 1

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page.

Vo.	Ite	Item Specifications		Test Method
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board). The capacitor should be subjected to a simple harmonic motion
12	Vibration Resistance	D.F.	Within the specified tolerance Char. Specification X7R D.F.≤0.025 Q≥400+20C*² (C<30pF)	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist Cu Glass Epoxy Board
13 Deflection		n	No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize (in mm)
14	Solderab Terminati	•	Fig. 2 75% of the terminations are to be soldered evenly and continuously.	Fig. 3 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 2±0.5 sec. at 235±5°C. Immersing speed: 25±2.5mm/s
		Appearance	No marking defects	Preheat the capacitor as table. Immerse the capacitor in eutectic solder solution at 260±5°C for 10±1 sec. Let sit at
15	Resistance to Soldering	Capacitance Change	Char. Capacitance Change X7R Within ±10% SL Within ±2.5% or ±0.25pF (Whichever is larger)	*¹room condition for 24±2 hrs., then measure. •Immersing speed : 25±2.5mm/s •Pretreatment for X7R char. Perform a heat treatment at 150±₁8°C for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.
	Heat	I.R.	More than 1,000M Ω	
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100°C to 120°C 1 min. 2 170°C to 200°C 1 min.

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page.

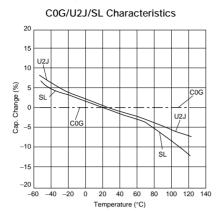
lo. It	tem	Specifications	Test Method		
	Appearance No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±2.5% or ±0.25pF (Whichever is larger)		Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at *'room condition, then measure. Step Temperature (°C) Time (min.)		
Temperature Cycle	D.F. Q	$\begin{tabular}{c c} \hline Char. & Specification \\ \hline X7R & D.F. \le 0.05 \\ \hline SL & Q \ge 400 + 20C^{*2} (C < 30pF) \\ \hline Q \ge 1000 & (C \ge 30pF) \\ \hline \\ More than $3,000M\Omega$ \\ \hline \end{tabular}$	1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 • Pretreatment for X7R char. Perform a heat treatment at 150±₁8°C for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.		
	Dielectric Strength	In accordance with item No.4	Solder resist Glass Epoxy Board Fig. 4		
Humidity 7 (Steady State)	Appearance Capacitance Change D.F. Q	No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger) Char. Specification X7R D.F.≤0.05 SL Q≥275+5/2C*2 (C<30pF) Q≥350 (C≥30pF)	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500±12 hrs. Remove and let sit for 24±2 hrs. at *'room condition, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at *'room condition.		
	I.R. Dielectric Strength	More than $3{,}000M\Omega$ In accordance with item No.4			
	Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±20% SL Within ±3.0% or ±0.3pF (Whichever is larger)	Impulse Voltage Each individual capacitor should be subjected to a 2.5kV (Type GC/GF: 5kV) Impulses (the voltage value means zero to peak) for three times. Then the capacitors are applied to life test.		
8 Life	D.F. Q	Char. Specification X7R D.F.≤0.05 SL Q≥275+5/2C*² (C<30pF)	Apply voltage as Table for 1,000 hrs. at 125 $^{+2}_{-0}$ °C, relative humidity 50% max. Type Applied voltage GB AC312.5V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec.		
	I.R.	More than 3,000MΩ	GC AC425V (r.m.s.), except that once each hour the		
	Dielectric Strength	In accordance with item No.4 perature : 15 to 35℃. Relative humidity : 45 to 75%. Atr	voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. Let sit for 24±2 hrs. at *¹room condition, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at *¹room condition.		

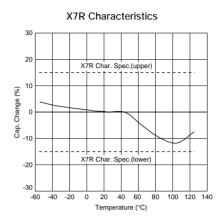
^{*1 &}quot;Room condition" Temperature : 15 to 35℃, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page.

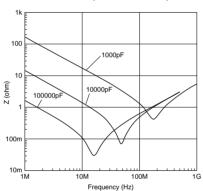
No.	Ite	em	Specifications	Test Method	
		Appearance Capacitance Change	No marking defects Char. Capacitance Change		
	Humidity Loading		X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger)	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500 ±26 hrs. Remove and let sit for 24±2 hrs. at *iroom	
19		D.F. Q	Char. Specification X7R D.F.≦0.05 SL Q≥275+5/2C*² (C<30pF)	ondition, then measure. • Pretreatment for X7R char. Perform a heat treatment at 150 [±] ₁ % [∞] c for 60±5 min. and then let sit for 24±2 hrs. at *¹room condition.	
		I.R.	More than $3{,}000M\Omega$		
		Dielectric Strength	In accordance with item No.4		

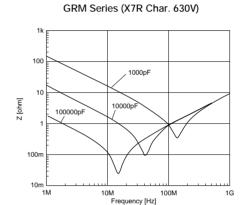

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

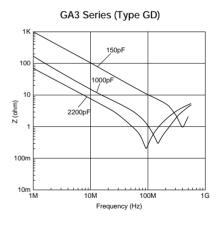


^{*2 &}quot;C" expresses nominal capacitance value (pF).

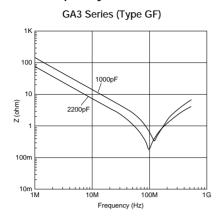
GRM/GR4/GA2/GA3 Series Data (Typical Example)

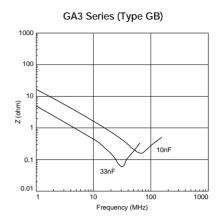

■ Capacitance-Temperature Characteristics




■ Impedance-Frequency Characteristics

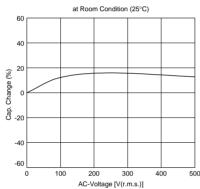
GA2 Series 1000pF 100000p 10000p Frequency [Hz]

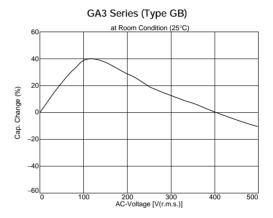




GRM/GR4/GA2/GA3 Series Data (Typical Example)

Continued from the preceding page.

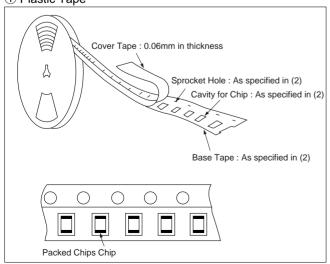

■ Impedance-Frequency Characteristics

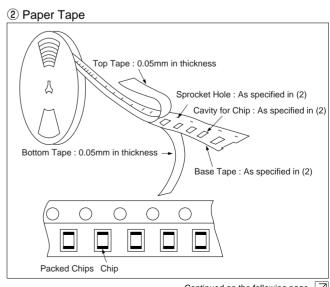


■ Capacitance-AC Voltage Characteristics

Package

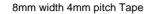
Taping is standard packaging method.

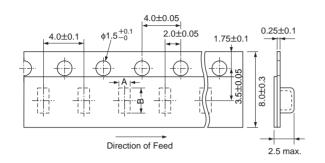

■ Minimum Quantity Guide


■ Williman Quantity Guide		Dimensions (mm)			Quantity (pcs.)		
Part Nu	mber	Dimensions (min)			φ180mm reel		
			W	Т	Paper Tape	Plastic Tape	
	GRM18	1.6	0.8	0.8	4,000	-	
	CDM24	2.0	1.25	1.0	4,000	-	
	GRM21			1.25	-	3,000	
				1.0	4,000	-	
	GRM31	3.2	1.6	1.25	-	3,000	
				1.6	-	2,000	
			2.5	1.0	4,000	-	
	CDM22	2.2		1.25	-	3,000	
Medium-voltage	GRM32	3.2		1.5	-	2,000	
				2.0	-	1,000	
	GRM42/GR442	4.5	2.0	1.0	-	3,000	
				1.5	-	2,000	
				2.0	-	2,000	
	GRM43/GR443	4.5	3.2	1.5	-	1,000	
				2.0	-	1,000	
				2.5	-	500	
	GRM55	5.7	5.0	2.0	-	1,000	
	GA242	4.5	2.0	1.5	-	2,000	
AC250V	GA243	4.5	3.2	1.5	-	1,000	
ACZOUV				2.0	-	1,000	
	GA255	5.7	5.0	2.0	-	1,000	
	GA342	4.5	2.0	1.5	-	2,000	
	GA342		2.0	2.0	-	2,000	
	GA343	4.5	3.2	1.5	-	1,000	
Safety Std.	GA343	4.0	3.2	2.0	-	1,000	
Recognition	GA352	5.7	2.8	1.5	-	1,000	
				1.5	-	1,000	
	GA355	5.7	5.0	2.0	-	1,000	
				2.7	-	500	

■ Tape Carrier Packaging

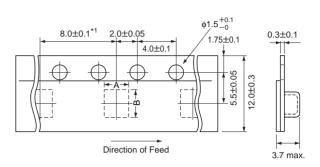
(1) Appearance of Taping


① Plastic Tape



Package

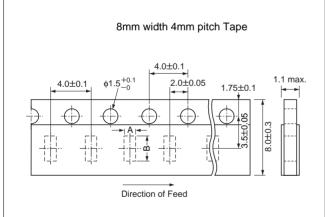
- Continued from the preceding page.
- (2) Dimensions of Tape
- ① Plastic Tape



Part Number	A*	B*	
GRM21 (T≧1.25mm)	1.45	2.25	
GRM31 (T≥1.25mm)	2.0	3.6	
GRM32	2.9	3.6	

*Nominal Value

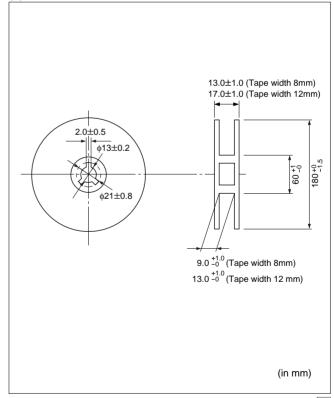
12mm width 8mm/4mm pitch Tape



Part Number	A*	B*
GRM42/GR442/GA242/GA342	2.5	5.1
GRM43/GR443/GA243/GA343	3.6	4.9
GA352	3.2	6.1
GRM55/GA255/GA355	5.4	6.1

^{*1 4.0±0.1}mm in case of GRM42/GR442/GA242/GA342

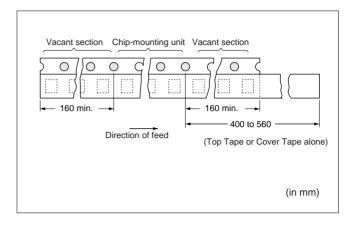
*Nominal Value (in mm)

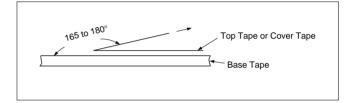

2 Paper Tape

Part Number	A*	B*
GRM18	1.05	1.85
GRM21 (T=1.0mm)	1.45	2.25
GRM31 (T=1.0mm)	2.0	3.6

*Nominal value (in mm)

(3) Dimensions of Reel





Package

- Continued from the preceding page.
- (4) Taping Method
 - ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
 - 2 Part of the leader and part of the empty tape shall be attached to the end of the tape as shown at right.
 - 3 The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
 - 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
 - 5 The top tape or cover tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocket holes.
 - 6 Cumulative tolerance of sprocket holes, 10 pitches:
 - 7 Peeling off force: 0.1 to 0.7N in the direction shown at right.

1 Caution

■ Storage and Operating Conditions

Operating and storage environment
Do not use or store capacitors in a corrosive
atmosphere, especially where chloride gas, sulfide
gas, acid, alkali, salt or the like are present. And
avoid exposure to moisture. Before cleaning, bonding
or molding this product, verify that these processes
do not affect product quality by testing the
performance of a cleaned, bonded or molded product
in the intended equipment. Store the capacitors

where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%. Use capacitors within 6 months. Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Handling

- Vibration and impact
 Do not expose a capacitor to excessive shock or vibration during use.
- 2. Do not directly touch the chip capacitor, especially the ceramic body. Residue from hands/fingers may create a short circuit environment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

⚠Caution

■ Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

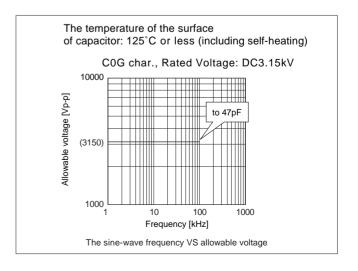
When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature and Self-generated Heat

(1) In case of X7R char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as selfgenerated heat is within 20°C on the condition of atmosphere temperature 25°C. When measuring, use a thermocouple of small thermal capacity-K of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)


(2) In case of C0G char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

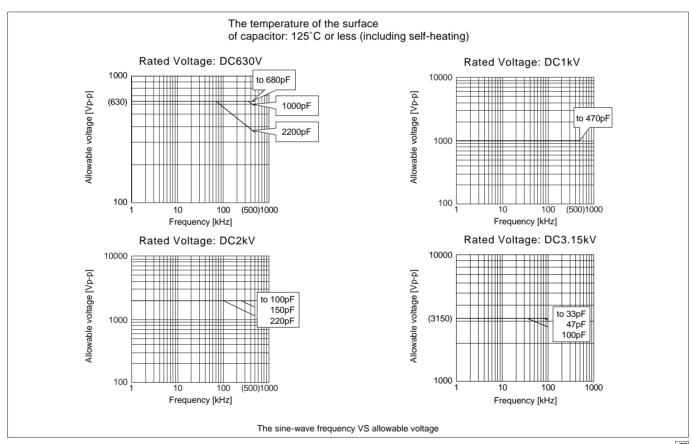
The frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage should be less than the value shown in figure at right.

In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

1 Caution

Continued from the preceding page.


(3) In case of U2J char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 500kHz (less than 100kHz in case of rated voltage: DC3.15kV). The applied voltage should be less than the value shown in figure below.

In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

⚠Caution

Continued from the preceding page.

(4) In case of GRM series SL char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 500kHz. The applied voltage should be less than the value shown in figure at right.

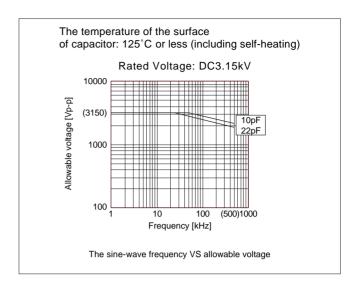
In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

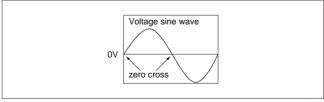
Otherwise, accurate measurement cannot be ensured.)

3. Test condition for AC withstanding Voltage

(1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave.


If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

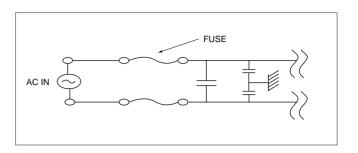

(2) Voltage applied method

The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied directly to the capacitor without raising it from near zero, it should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero. and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the capacitor without raising it from near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the figure at right -

⚠Caution


Continued from the preceding page.

4. Fail-safe

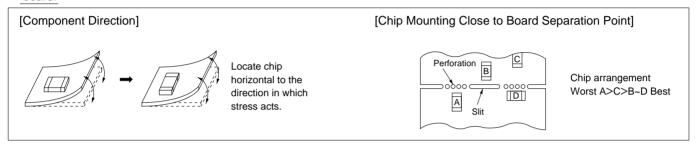
Failure of a capacitor may result in a short circuit. Be sure to provide an appropriate fail-safe function such as a fuse on your product to help eliminate possible electric shock, fire, or fumes.

Please consider using fuses on each AC line if the capacitors are used between the AC input lines and earth (line bypass capacitors), to prepare for the worst case, such as a short circuit.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

1Caution

■ Caution (Soldering and Mounting)


1. Vibration and Impact

Do not expose a capacitor to excessive shock or vibration during use.

2. Circuit Board Material

In case that chip size is 4.5×3.2mm or more, a metal-board or metal-frame such as Aluminum board is not available because soldering heat causes expansion and shrinkage of a board or frame, which will cause a chip to crack.

3. Land Layout for Cropping PC Board
Choose a mounting position that minimizes the stress
imposed on the chip during flexing or bending of the
board.

4. Soldering

If a chip component is heated or cooled abruptly during soldering, it may crack due to the thermal shock. To prevent this, follow our recommendations below for adequate soldering conditions. Carefully perform preheating so that temperature difference (ΔT) between the solder and component surface is in the following range. The smaller the temperatures difference (ΔT) between the solder and component surface is, the smaller the influence on the chip is. When components are immersed in solvent after mounting, please set the slow cooling process to keep the temperature difference within 100°C.

process to hoop the term	31100 11111111 100		
Chip Size Soldering Method	3.2×1.6mm and under	3.2×2.5mm and over	
Reflow Method or Soldering Iron Method	ΔT≦190°C	ΔT≦130°C	
Flow Method or Dip Soldering Method	ΔT≦150°C		

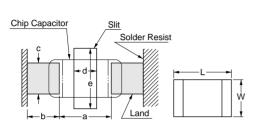
FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

5. Soldering Iron

When soldering chips with a soldering iron, it should be performed in following conditions.

And pre-heating shown in clause 4.

Item	Conditions		
Chip Size	≦2.0×1.25mm	≧3.2×1.6mm	
Temperature of Iron tip	300°C max.	270°C max.	
Soldering Iron Wattage	20W max.		
Diameter of Iron tip	φ 3.0mm max.		
Soldering Time	3 sec. max.		
Caution	Do not allow the iron tip to directly touch the ceramic element.		


Notice

■ Notice (Soldering and Mounting)

1. Construction of Board Pattern

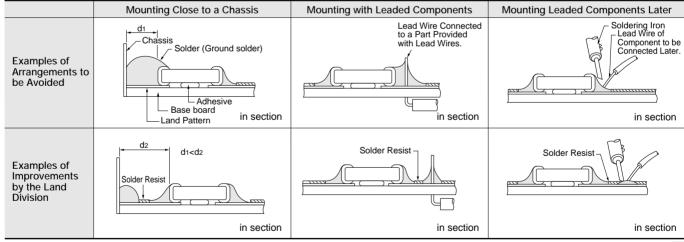
After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

Construction and Dimensions of Pattern (Example)

Preparing slit helps flux cleaning and resin coating on the back of the capacitor.

Flow Soldering

L×W	а	b	С	
1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8	
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	
3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4	


Flow soldering: 3.2×1.6 or less available.

Reflow Soldering

	<u> </u>				
L×W	a	b	С	d	е
1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	-	-
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	-	-
3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	1.0-2.0	3.2-3.7
3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	1.0-2.0	4.1-4.6
4.5×2.0	2.8-3.4	1.2-1.4	1.4-1.8	1.0-2.8	3.6-4.1
4.5×3.2	2.8-3.4	1.2-1.4	2.3-3.0	1.0-2.8	4.8-5.3
5.7×2.8	4.0-4.6	1.4-1.6	2.1-2.6	1.0-4.0	4.4-4.9
5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	1.0-4.0	6.6-7.1

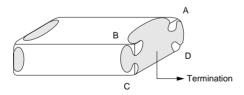
(in mm)

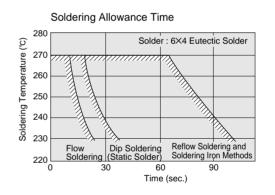
Land Layout to Prevent Excessive Solder

Notice

Continued from the preceding page.

- 2. Mounting of Chips
- Thickness of adhesives applied Keep thickness of adhesives applied (50-105µm or more) to reinforce the adhesive contact considering the thickness of the termination or capacitor (20-70µm) and the land pattern (30-35µm).
- Mechanical shock of the chip placer When the positioning claws and pick-up nozzle are worn, the load is applied to the chip while positioning is concentrated in one position, thus causing cracks, breakage, faulty positioning accuracy, etc. Careful checking and maintenance are necessary to prevent unexpected trouble. An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.


3. Soldering


(1) Limit of losing effective area of the terminations and conditions needed for soldering.

> Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain at a maximum of 25% on all edge length A-B-C-D-A of part with A, B, C, D, shown in the Figure below.

In case of repeated soldering, the accumulated soldering time must be within the range shown at right.

(2) Flux

 Please use it after confirming there is no problem in the reliability of the product beforehand with a intended equipment. The residue of flux might cause the decrease in nonconductivity and the corrosion of an external electrode, etc.

(3) Solder Amount

1) Flow soldering and iron soldering Use as little solder as possible, and confirm that the solder is securely placed.

Notice

Continued from the preceding page.

2 Reflow soldering

When soldering, confirm that the solder is placed over 0.2mm of the surface of the terminations.

4. Cleaning

Please confirm there is no problem in the reliability of the product beforehand when cleaning it with a intended equipment.

The residue after it cleaning it might cause the decrease in the surface resistance of the chip and the corrosion of the electrode part, etc. As a result might cause reliability to deteriorate. Please confirm there is no problem with a intended equipment in the ultrasonic cleansing beforehand.

5. Resin Coating

Please use it after confirming there is no influence on the product with a intended equipment beforehand when the resin coating and molding.

The chip crack might be caused at the cool and heat cycle by bias of the amount of spreading of the resin and spreading thickness.

The resin for the coating and molding must use the thing that as the stress when stiffening is small, and the hygroscopic is as low as possible.

■ Rating

- 1. Capacitance change of capacitor
- (1) In case of X7R char.

Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit.

Please contact us if you need detailed information.

- (2) In case of any char. except X7R Capacitance might change a little depending on the surrounding temperature or an applied voltage. Please contact us if you intend to use this product in a strict time constant circuit.
- 2. Performance check by equipment

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 (X7R char.) ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic. Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the

inductance of the circuit.

ISO 9001 Certifications

■ Qualified Standards

The products listed here have been produced by ISO 9001 certified factory.

Plant
Fukui Murata Mfg. Co., Ltd.
Izumo Murata Mfg. Co., Ltd.
Okayama Murata Mfg. Co., Ltd.
Murata Electronics Singapore (Pte.) Ltd.
Murata Amazonia Industria E Comercio Ltda.
Suzhou Murata Electronics Co., Ltd.
Beijing Murata Electronics Co., Ltd.

♠ Note:

1. Export Control

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage to a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1 Aircraft equipment
- 2 Aerospace equipment Power plant equipment
- 3 Undersea equipment (5) Medical equipment
- 6 Transportation equipment (vehicles, trains, ships, etc.)
- Traffic signal equipment
- 8 Disaster prevention / crime prevention equipment
- Data-processing equipment
- (ii) Application of similar complexity and/or reliability requirements to the applications listed in the above
- 3. Product specifications in this catalog are as of November 2004. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or
- 4. Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

http://www.murata.com/