HIGH SPEED FUSES AND SYSTEM PROTECTION for Photovoltaic Systems and Installations

2018 Photovoltaic Portfolio

AXB gPV 200A

Ihr Rundumschutz für starke Ströme All-round protection for strong currents

ADLER-Your All-round Protection for Strong Currents!

ADLER Elektrotechnik Leipzig GmbH is a professional team which unites knowledge, skill and experience to provide both best technical expertise as well as customer service at one stop.

With know-how from a long-time history of fuse development and distribution we establish ourselves as your contact point for photovoltaic, industrial and electric vehicle fuses and accessories.

Based on our strong foundations and innovative spirit we strive

to achieve robust growth. Our diversified and dedicated team of sales people, product technicians and field application engineers supplies top quality products and superior customer support.

Our Products are Designed for Following Applications:

- Photovoltaic midget and medium fuse links (gPV)
- Photovoltaic NH fuses in various sizes (gPV)
- Rail-mount fuse holder cartridges for cylindrical fuses and NH blade type fuse bases
- Photovoltaic system components, combiner boxes and parts
- DC switches, isolators, disconnects, circuit breakers
- Photovoltaic surge protection devices (SPD)
- Cylindrical fuse links for industrial applications (gG)
- All standard DIN-sized NH blade fuses for general industrial application (gG)

- Fuse holders for cylindrical fuses, fuse mounts and NH blade type fuse bases
- HV fast acting semiconductor fuses
- Automotive grade EV main fuses for electric vehicles up to 1000VDC
- EV fuses for auxiliary protection for 500VDC and 700VDC up to 50A
- EV fuse bolt mounts and holders
- Automotive Mini and Midi blade fuses
- Special fuses for battery storage protection

Across all of our product range, we are proud to offer established, certified products that have developed a reputation for quality, reliability and innovation. We provide our customers with solutions expertise, a high standard of personalized service, availability of stock and an 'easy to deal with' experience.

Our Mission Statement

We add value to our customer's business by supplying sophisticated, high quality electrical products, solutions-focused

ADLER Global Network:

- ADLER Elektrotechnik Leipzig GmbH (Headquarters)
- O ADLER Regensburg (Engineering)
- Q ADLER Elektrotechnik Xi'an Co., Ltd. (Manufacturing)
- ADLER Songshan Lake Dongguan (Testing center)

expertise, personal service and genuine customer care at highest possible standards in our industry.

Droduct Selection Guides

880

6

0

0

IC IO

5

6

277 - 2

PV – Fuse Selection Guide

- In PV systems consisting of arrays with >4 module strings the fault current can easily exceed the operating current. The current can reach a level that can cause overheating and damage of wire insulation.
- To ensure the best possible protection for the system and people working on the equipment, each string of solar panels MUST be protected with one fuse on each + and terminal.
- These fuses will also isolate the faulted string so that the rest of the PV system can continue to generate electricity.

When a fault occurs in the DC circuit of the PV installation, the absence of natural zero crossing makes the interruption of DC faults more difficult than the interruption of AC faults as only the fuse arc will force the current to decrease to zero.

The correct interruption depends on three parameters:

- The value of the DC voltage
- The value of the ratio L/R (time constant) of the fault path
- The value of the fault current

Due to the unique requirement in PV systems of having to clear a very low level fault, it is important that a fuse with full range capability is used. This means that the fuse is designed for clearing overloads as well as short circuit faults and requires the use of a fuse with a gPV characteristic.

In order to calculate the best fuse for a general recommendation,

the following information is required:

- Number of strings connected in parallel N
- N>4: PV fuse protection needed!
- Number of solar modules connected in series per string M
- The ambient temperature

From the solar module specifications:

- Short circuit current of the string lsc
- > Open circuit voltage Uoc
- Conditions: Uoc stc

Checklist:

- 1) Taking into account that neither the + nor the terminals are connected to ground, each string of modules has to be equipped with two fuses: one fuse for the positive and one for the negative output.
- 2) The first rule has to be applied when the number of chains in parallel (N) is equal to or higher than 4. (for less than 4 parallel chains, fusing is not necessary).
- 3) The maximum DC operating voltage of the fuse must be higher than or equal to 1.20 x M x (Voc src).

In operation, fuse links, like thermal devices, are influenced by ambient temperature. The current capability of the PV fuse links shall therefore be derated according

to the corresponding correction factor in the PV temperature derating curve

Calculation method to choose the correct fuse for a PV power system:

Rated Voltage of the Fuse Un:

The rated voltage of the fuse must be higher than the maximum open-circuit voltage of the PV string. To determine the maximum value, the open-circuit voltage U_{oc} must be adjusted to the lowest possible ambient air temperature of the solar panel. In most cases, the rated voltage can be calculated as follows, taking into consideration the lowest temperature of -25 °C and the corresponding temperature coefficient:

$U_n \ge 1.2 \times M \times (U_{OC STC})$

Rated current of the fuse In:

The rated current of the fuse must be higher than the maximum value of the current generated by the solar module.

• Isc is the maximum current that a module can generate.

Rated current of the fuse In in grouping conditions:

For non-STC ambient temperatures, operations under fluctuating current loads and side-by-side mounting of several fuse holders, derating factors must be considered. These factors can be obtained from the datasheets of the fuse links and holders.

- KT: Fuse-link temperature correction factor (see diagram above)
- Kc Fuse-link derating factor for current variation
- (Kc = 0.85 for PV applications)
- K_G: Grouping factor (see table on the right)

The formula is as follows: $I_n \ge I_{SC} / (K_T \times 0.85 \times K_G)$

Installation example:

Number of strings connected in parallel	N=5
Number of solar modules connected in series per string	M=4
Ambient temperature	50 °C

Solar module specifications:

Short circuit current of the string	Isc = 5.5 A
Open circuit voltage under Standard Test Conditions:	$U_{\text{OCSTC}} = 44.5 \text{ V}$

Determine rated voltage of the fuse:

 $U_n \ge 1.2 \text{ x M x (Uoc stc)}$ $U_n \ge 1.2 \text{ x 4 x 44.5} = 213.6 \text{ V}$

	- The	
1	the solar module	
	Number of units n	Kg grouping factor
	1 ≤ n < 4	1
	$4 \le n < 7$	0.8
	7 < n < 10	0.7

This table considers the proximity heating effect if fuse holders are mounted in groups and are operated at nominal load. Depending on the fuse link there is a certain power loss from each fuse which may increase the ambient air temperature around the holder above the ambient air temperature within the equipment enclosure.

0.6

Determine rated nominal current of the fuse:

10 ≤ n

Ambient temperature derating: 50 °C, K_T = 0.87 As the fuse holders are grouped in units of five, a grouping factor of K_G = 0.8 shall be applied

$I_n \ge I_{sc} / (K_T \times 0.85 \times K_G)$	In ≥ 1.7 x Is
$ _{n} \ge _{sc} / (0.87 \times 0.85 \times 0.8)$	I₁ ≥ 9.35 A

From the range of possible rated currents the next higher rated current above 9.35 A must be chosen. Accordingly, this value is

 $I_n = 10 A$

hotovoltaic Fuses and Protection Components

- PV Cylindrical Fuse Links
- PV NH Type Fuses

B

• DC Surge Protection Devices

A73 gPV 1000 VDC Fuse 10x38 mm

FEATURES:

- 1000 VDC, 10x38 mm PV fuse link
- Rated Current: 1-30 A
- Rated Breaking Capacity: 30 kA
- Time Constant: 1-3 ms
- Special design with silver plated caps for high-power PV applications
- Standard: UL 248-19
- Approval: UL (File: E490190)
- BH100-01,BH100-02 holders for DIN rail mounting

ELECTRICAL SPECIFICATIONS

Part Number				Rated	Ampere	Breaking	l²t (A²s)		Dissipation (W)		Certifica- tions
Cartridge	Central Mount	Level Mount	PCB Mount	Current	rrent Code	Capacity	Pre- Arcing	Total at 1000 V	80 % In	100 % In	UL
A731100700	A731100701	A731100702	A731100703	1A	1100		0.15	0.4	0.8	1.5	•
A731200700	A731200701	A731200702	A731200703	2A	1200		1.3	3.4	0.7	1.1	•
A731300700	A731300701	A731300702	A731300703	ЗA	1300		4	12	0.8	1.3	•
A731400700	A731400701	A731400702	A731400703	4A	1400		10	28	1.1	1.4	•
A731500700	A731500701	A731500702	A731500703	5A	1500		19	50	1.1	1.4	•
A731600700	A731600701	A731600702	A731600703	6A	1600		32	93	1.2	1.8	•
A731800700	A731800701	A731800702	A731800703	8A	1800	30 kA @1000 VDC	85	205	1.2	2.2	•
A732100700	A732100701	A732100702	A732100703	10A	2100		30	70	1.3	2.3	•
A732120700	A732120701	A732120702	A732120703	12A	2120		98	150	1.5	2.8	•
A732150700	A732150701	A732150702	A732150703	15A	2150		149	230	1.8	3.0	•
A732200700	A732200701	A732200702	A732200703	20A	2200		229	330	2.4	3.6	•
A732250700	A732250701	A732250702	A732250703	25A	2250		411	500	2.6	4.1	•
A732300700	A732300701	A732300702	A732300703	30A	2300		1200	2500	4.3	5.7	•

Note: (1) DC cold resistance are measured at <10 % of rated current in ambient temperature of 25±5 °C (2) Typical pre-arcing I²t measured at 10*1n current

TIME VS CURRENT CHARACTERISTIC

Rated Current	100%	135%	200%
10-30 A	>4 h	<1 h	< 4 min
PART NUMB	ER SYSTI	EM	
<u>A73</u>	<u>2300</u>	<u>7</u>	<u>(</u>
•	•	*	
1	2	3	
1 ····· Produc	t Series	······ A73	
2 Amper	e Code	30A (s	ee ampere co
3 ····· Rated	Voltage	7: 100	V0V
4 ····· Supple	mentary Code	00: Ca 02: Le	artridge; 01: 0 evel Mount; 03

Time Current Curve (reference)

Preliminary datasheet, subject to change! Please find latest updates for download on www.adlerelectric.com

A83 gPV 1100 VDC Fuse 10x38 mm

FEATURES:

- 1100 VDC, 10x38 mm PV fuse link
- Rated Current: 10-30 A
- Rated Breaking Capacity: 20 kA
- Time Constant: 1-3 ms
- Special design with silver plated caps for high-power PV applications
- Standard: UL 248-19 / EN 60269-6
- Approvals: UL(pending), CE
- BH100-01, BH100-02 holders for DIN rail mounting

ELECTRICAL SPECIFICATIONS

Part Number		Detect An	American Brooking	l²t (A²s)		Dissipation (W)		Certifications				
Cartridge	Level Mount	Central Mount	PCB Mount	Current	Code	Capacity	Pre-Arcing	Total at 1100 V	80 % In	100 % In	UL	CE
A832100700	A832100701	A832100702	A832100703	10A	2100		30	70	1.0	1.3	0	•
A832150700	A832150701	A832150702	A832150703	15A	2150	20 kA@1100 VDC	149	230	1.4	1.8	0	•
A832200700	A832200701	A832200702	A832200703	20A	2200		229	330	2.1	3.0	0	٠
A832250700	A832250701	A832250702	A832250703	25A	2250		411	1860	2.5	3.4	0	•
A832300700	A832300701	A832300702	A832300703	30A	2300		600	3300	3.2	4.3	0	•

Note: (1) DC Cold Resistance are measured at <10% of rated current in ambient temperature of 25°C

(2) Temperature rise: ≤70K at rated current

(3) Typical pre-arcing I²t measured at 10In current

TIME VS CURRENT CHARACTERISTIC

Standard		UL	IE	C	
Rated Current	100%	135%	200%	113%	145%
10-30 A	>4 h	<1h	< 4 min	>1 H	<1 H

PART NUMBER SYSTEM

<u>A83</u>	2300	<u>7</u>	<u>00</u>
Ļ	Ļ	Ļ	Ļ
1	2	3	4

1	Product Series	A83
2	Ampere Code	30A (see ampere code column of electrical specifications)
3	Rated Voltage	7: 1100V
4	Supplementary Code	00: Cartridge; 01: Central Mount; 02: Level Mount; 03: PCB Mount;

Time Current Curve (reference)

PV PV CYLINDRICAL FUSE LINKS

DIMENSIONS (mm)

adler®

A74 gPV 1500 VDC Fuse 14x51mm

FEATURES:

- 1500 VDC, 14x51 mm PV fuse link
- Rated Current: 4-30 A
- Rated Breaking Capacity: 10 kA
- Time Constant: ≤1 ms
- Special design with silver plated caps for high-power PV applications
- Standard: UL 248-19
- Approval: UL (File: E490190)
- BH200, BH201 holders for DIN rail mounting

ELECTRICAL SPECIFICATIONS

Part Number		Deteil		Dreeking	l²t (A²s)		Dissipation (W)			Certifications
Cylindrical	In-Line Terminal	Current	Ampere Code	Capacity	Pre-Arcing	Total at 1500 V	70 % In	80 % In	100 % In	UL
A741400b00	A741400b01	4A	1400		8	60	0.9	1.25	2.2	•
A742150b00	A742150b01	15A	2150		310	900	1.6	2.3	3.9	•
A742200b00	A742200b01	20A	2200	10 kA@1500 VDC	200	340	2.4	3.5	6.1	•
A742250b00	A742250b01	25A	2250		295	400	2.75	3.8	7.0	•
A742300b00	A742300b01	30A	2300		380	450	2.95	3.85	7.3	•

Note: (1) DC cold resistance are measured at <10 % of rated current in ambient temperature of 25±5 $^\circ\!\!C$

(2) Typical pre-arcing I²t measured at 10*In current

TIME VS CURRENT CHARACTERISTIC

Rated Current	100%	135%	200%
4-30 A	>4 h	< 1h	< 4 min

PART NUMBER SYSTEM

DIMENSIONS (mm)

A74xxxxb00

10±0.15

51^{-0.6}

Φ<u>1</u>4.

001 .

A74xxxxb01

Time Current Curve (reference)

ELECTRICAL SPECIFICATIONS

A75 / A78 gPV 1500 VDC Fuse 10x85 mm

FEATURES:

- 1500 VDC, 10x85 mm PV fuse link
- Rated Current: 2-15 A
- Rated Breaking Capacity: 30 kA
- Time Constant: ≤1 ms
- Special design with silver plated caps for high-power PV applications
- Standard: UL 248-19
- Approval: UL (File: E490190)
- BH300 holder for DIN rail mounting

l²t (A²s) **Dissipation (W)** Certifications Part Number Breaking Rated Ampere 70 % 80 % 100 % Capacity Total at Current Code **Pre-Arcing** UL In-Line Terminal Cylindrical 1500 V In In In A751200b00 A781200b00 2A 1200 3.5 10 1.1 1.45 2.6 • A751400b00 A781400b00 1400 50 1.2 1.55 2.8 4A 15 A751500b00 A781500b00 5A 1500 22 75 1.4 1.8 3.2 30 kA@1500 VDC A782100b00 A752100b00 10A 2100 300 1100 1.7 23 42 • A752120b00 A782120b00 12A 2120 20 60 2.4 4.2 1.8 • A752150b00 A782150b00 15A 2150 35 95 2 2.8 5

Note: (1) DC cold resistance are measured at <10 % of rated current in ambient temperature of 25±5 °C

(2) For A78 use 10-12 AWG (6-4mm²) lead wire; recommended crimping tool: T&B Sta-Kon ERG4002 or equivalent.

TIME VS CURRENT CHARACTERISTIC

Rated Current	100%	135%	200%
2-15 A	>4 h	< 1h	< 4 min

PART NUMBER SYSTEM

Time Current Curve (reference)

A85 gPV 1500 VDC Fuse 10x85 mm

FEATURES:

- 1500 VDC, 10x85 mm PV fuse link with glass-fiber
- Rated Current: 10-30 A
- Rated Breaking Capacity: 30 kA
- Time Constant: 1-3 ms
- Special design with silver plated caps for high-power PV applications
- Standard: UL 248-19 / EN 60269-6
- Approvals: UL(pending)
- BH300 holder for DIN rail mounting

ELECTRICAL SPECIFICATIONS

Part Nu	umber			Davida	l²t (A²s)		Dissipation (W)		Certifications
Cylindrical	In-Line Terminal	Rated Current	Ampere Code	Breaking Capacity	Pre-Arcing	Total at 1500 V	80 % In	100 % In	UL
A852100b00	A852100b01	10A	2100		3.5	10	1.45	2.6	0
A852150b00	A852150b01	15A	2150		15	50	1.55	2.8	0
A852200b00	A852200b01	20A	2200	30 kA@1500 VDC	22	75	1.8	3.2	0
A852250b00	A852250b01	25A	2250		300	1100	2.3	4.2	0
A852300b00	A852300b01	30A	2300		20	60	2.4	4.2	0

Note : (1) DC cold resistance are measured at <10 % of rated current in ambient temperature of 25±5 $^{\circ}$ C

(2) For A85 use 10-12 AWG (6-4mm²) lead wire; recommended crimping tool: T&B Sta-Kon ERG4002 or equivalent.

TIME VS CURRENT CHARACTERISTIC

Standard		UL	IE	C	
Rated Current	100%	135%	200%	113%	145%
10-30 A	>4 h	< 1 h	< 4 min	>1 h	< 1h

PART NUMBER SYSTEM

4	<u>\85</u>	<u>2150</u>	<u>b</u>	<u>00</u>
	Ļ	Ļ	Ļ	Ļ
	1	2	3	4
1	ProductSeries		A85	
2	Ampere Code		15A(see ampere o	code

<u>00</u>	
↓	
4	

column of electrical specifications) 3 ····· Rated Voltage ···· b: 1500V

4 Supplementary Code 00: Cylindrical; 01: In-LIne Terminal

CURRENT IN AMPERES (A)

0.1

Time Current Curve (reference)

PV Cylindrical Fuse Links 16

A76 / A79 gPV 1500 VDC Fuse

FEATURES:

- 1500 VDC, 10x57 mm PV fuse link
- Rated Current: 1-6 A
- Max. Breaking Capacity: 10 kA
- Time Constant: ≤1 ms
- Special design with silver plated caps for high-power PV applications
- Standard: UL 248-19
- Approval: UL (File: E490190)

ELECTRICAL SPECIFICATIONS

Part Nu	mber					l²t (A²s)		Certifications
Cylindrical	In-Line Terminal	Rated Current	Ampere Code	Breaking Capacity	Pre-Arcing	Total at 1500 V	100% In	UL
A761100b00	A791100b00	1.0A	1100		2	12	2.1	•
A761250b00	A791250b00	2.5A	1250	10 kA@1500 VDC	3	15	2.1	•
A761300b00	A791300b00	3.0A	1300	20 kA@1500 VDC	5	21	2.1	•
A761350b00	A791350b00	3.5A	1350	(self-tested)	15	56	2.2	•
A761400b00	A791400b00	4.0A	1400		18	68	1.8	•
A761600b00	A791600b00	6.0A	1600		60	200	2.1	•

Note:(1) DC cold resistance are measured at <10 % of rated current in ambient temperature of 25±5 °C

(2) Typical pre-arcing I²t measured at 10*In current

(3) For A79 use 10-12 AWG (6-4 mm2) wire range cu only (solid/stranded); recommended crimping tool: T&B Sta-Kon ERG4002 or equivalent.

TIME VS CURRENT CHARACTERISTICS

Rated Current	100%	135%	200%
1A-6A	> 4 h	< 1 h	< 4 min

PART NUMBER SYSTEM

4 ······ Supplementary Code ······ 00: default

DIMENSIONS (mm)

Time Current Curve (reference)

AX6 gPV 1000/1500VDC Fuse

FEATURES:

- 1000 / 1500 VDC, PV fuse link
- Rated Current: 100-160 A
- Rated Breaking Capacity: 10 kA
- Time Constant: 1-3 ms
- Standard: Ref. to UL 248-19
- Approval: UL(pending)
- BH1XL Fuse base

ELECTRICAL SPECIFICATIONS

	Detail	•	Procking	I ² t (A ² s)		Dissipa	tion (W)	Certifications
Part Number	Current	Ampere Code	Capacity	Pre-Arcing	Total	80% In	100% In	UL
AX63100700	100 A	3100		1195.2	4374.4	14.4	27.2	0
AX63125700	125 A	3125	10 kA@1000 VDC	1696	7960	16	29.6	0
AX63160700	160 A	3160		3152	18723.2	20	36	0
AX63100b00	100 A	3100		1494	5468	18	34	0
AX63125b00	125 A	3125	10 kA@1500 VDC	2120	9950	20	37	0
AX63160b00	160 A	3160	<u> </u>	3940	23404	25	45	0

Note: (1) DC cold resistance are measured at <10% of rated current in ambient temperature of 20 ± 5 °C

PART NUMBER SYSTEM

1	Product Series .		AX6
2	Ampere Code		160A(see ampere code column of electrical specifications)
3	Rated Voltage		7: 1000V; b: 1500V
4	Supplementary C	ode	00: default size

Time Current Curve (reference)

AX7 gPV 1000/1500VDC Fuse

FEATURES:

- 1000 / 1500 VDC, PV fuse link
- Rated Current: 125-250 A
- Rated Breaking Capacity: 10 kA
- Time Constant: 1-3 ms
- Standard: Ref. to UL 248-19
- Approval: UL(pending)
- BH03L Fuse base

ELECTRICAL SPECIFICATIONS

	Detail		Procking	Procking I ² t (A ² s)		Dissipa	tion (W)	Certifications
Part Number	Rated Current	Ampere Code	Capacity	Pre-Arcing	Total	80% In	100% In	UL
AX73125700	125 A	3125		1975.2	12516	18.4	32.8	0
AX73160700	160 A	3160	10 kA@1000 VDC	3333.6	20985.6	22.4	38.4	0
AX73200700	200 A	3200		7986.4	48375.2	25.6	45.6	0
AX73250700	250 A	3250		1975.2	12516	18.4	32.8	0
AX73125b00	125 A	3125		2469	15645	23	41	0
AX73160b00	160 A	3160	10 kA@1500 VDC	4167	26232	28	48	0
AX73200b00	200 A	3200	10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	9983	60469	32	57	0
AX73250b00	250 A	3250		18078	101563	39	68	0

Note: DC cold resistance are measured at <10% of rated current in ambient temperature of 20 ± 5 °C

PART NUMBER SYSTEM

AX7	<u>3160</u>	<u>b</u>	<u>00</u>	
Ļ	Ļ	Ļ	Ļ	
1	2	3	4	
1 ····· Product Series		AX7		
2····· Ampere Code		160A (see a	ampere code colur	nn of electrical specifications)
3····· Rated Voltage		7:1000V;	b: 1500V	

4..... Supplementary Code 00: default

Time Current Curve (reference)

AX8 gPV 1000/1500VDC Fuse

FEATURES:

- 1000 / 1500 VDC, PV fuse link
- Rated Current: 250-400 A
- Rated Breaking Capacity: 10 kA
- Time Constant: 1-3 ms
- Standard: Ref. to UL 248-19
- Approval: UL(pending)
- BH03L Fuse base

ELECTRICAL SPECIFICATIONS

	Potod	Amnoro	Broaking	l²t (A²s)		Dissipa	tion (W)	Certifications
Part Number	Current	Code	Capacity	Pre-Arcing	Total	80% In	100% In	UL
AX83250700	250A	3250		14432.8	81143.2	28	52.8	0
AX83315700	315A	3315	10 kA@1000 VDC	33245.6	133088	33.6	62.4	0
AX83355700	355A	3355	10 10 10 10 10 10 10 10 10 10 10 10 10 1	32942.4	145278.4	35.2	68	0
AX83400700	400A	3400		14432.8	81143.2	28	52.8	0
AX83250b00	250A	3250		18041	101429	35	66	0
AX83315b00	315A	3315	10 kA@1500 VDC	41557	166360	42	78	0
AX83355b00	355A	3355	10 KA@1300 VDC	41178	181598	44	85	0
AX83400b00	400A	3400		53391	247188	46	88	0

Note: DC cold resistance are measured at <10% of rated current in ambient temperature of 20 ± 5 °C

PART NUMBER SYSTEM

1	Product Series		AX8
2	Ampere Code		250(see ampere code column of electrical specifications)
3	Rated Voltage		7:1000V; b: 1500V
4	Supplementary	Code	00: default size

Time Current Curve (reference)

ASPD 1000VDC PV Surge Protection Device

adler

FEATURES:

- Suitable For Use in All Photovoltaic Systems
- Pre-wired Modular Complete Unit, Consisting of A Base Part and Plug-in Protection Modules
- Plug-in Protection Module, easy Installation and Maintainance
- High Energy Varistor, Response Time Less Than 25 Nanoseconds
- Optional Remote Signal Contact(FM) for Monitoring Device (Floating Changeover Contact)
- Din Rail Mounting TH35-7.5/DIN35
- In Compliance with :EN 50539-11

PRODUCT SPECIFICATIONS

ASPD PV DC Surge	e Protection Devic	e			
Poles			3P		
Standard			EN 50539-11		
Electrical Character	ristics				
Category IEC/EN			IEC II/EN2		
Open Voltage		Uoc Max	1000 VDC		
Max Continuous Ope	erational Voltage	Uc	1000 VDC		
Nominal Discharge	Current	In(8/20)µs	20 kA		
Maximum Discharge	Current	Imax(8/20)µs	40 kA		
Voltage Protection L	evel Up	Up	≤3.8 kV		
Response Time		tA	≤25 ns		
Contol and Indication	on				
Operating State / Fa	ult Indication		Green/Red		
Plug-in Protection M	odule		Yes		
Remote Signalling	Max. Working Vo	Itage(V)	30 VDC		
Contact (Optional)	Max. Working Cu	irrent	1 A		
Connection And Ins	tallation				
Miro	Hard cable mm ²		4-25		
vvire	Flexible cable	mm²	4-16		
Terminal Screws			M5		
Torque(Nm)	Main Circuit		2.5		
	Remote Contact		0.25		
Degree of Protection	1		IP20		
Installation Environ	ment				
Operating Temperate	ure Range (Tu)		-40°C to +80°C		
For Mounting on			TH35-7.5/DIN35		
Relative Humidity			30% to 90%		
Weight kg			0.36		

Model Numbering Definitions

PRODUCT ARCHITECTURE

1 Brand

- 2 Type
- 3 Max. Discharge Current Imax
- 4 Nominal Discharge Current In
- **5** Voltage Protection Level Up
- 6 Max. Continuous Operating Voltage Ucpv
- 7 Indicator
- 8 Standard Code
- 9 Certificate Symbol

Application

ADLER'S ASPD Series PV DC Surge Protection Devices are designed and manufactured complying to PV standard EN50539-11. It is widely used in PV DC combiner boxes, inverters, controllers and DC cabinets. With a rated voltage of 1000 VDC and a maximum discharge current of 40 kA, the integrated high-energy varistor provides highly effective protection against lightning and surge voltages.

PV DC SURGE PROTECTION DEVICES

CONNECTION DIAGRAM

WIRING INSTRUCTIONS

ASPD 1500VDC PV Surge Protection Device

adler

FEATURES:

- Suitable For Use in All Photovoltaic Systems
- Pre-wired Modular Complete Unit, Consisting of A Base Part and Plug-in Protection Modules
- Plug-in Protection Module, easy Installation and Maintainance
- High Energy Varistor, Response Time Less Than 25 Nanoseconds
- Optional Remote Signal Contact(FM) for Monitoring Device (Floating Changeover Contact)
- Ref. to EN 50539-11, GB/T 18802.31

PRODUCT SPECIFICATIONS

ASPD PV DC Surge	Protection Device	Э			
Pole			3P		
Standard			EN 50539-11 , GB/T 18802.31		
Electrical Character	ristics				
Open Voltage		Uoc Max	1500 VDC		
Max Continuous Operational Voltage		Uc	1800 VDC		
Nominal Discharge Current		In(8/20)µs	20 kA		
Maximum Discharge	Current	lmax(8/20)µs	40 kA		
Voltage Protection Lo	evel Up	Up	≤4.5 kV		
Response Time			≤25 ns		
Short-circuit Current Rating-Iscpv			220A		
Thermal Protection Function			Yes		
Remote Signal Outp	ut Function		Yes		
Mode of Protection			+/PE, -/PE, +/-		
Connection And Ins	tallation				
Miro	Hard cable mm ²		4-25		
vvire	Flexible cable r	mm²	4-16		
Terminal Screws			M5		
Torque(Nm)	Main Circuit		2.5		
	Remote Contact		0.25		
Degree of Protection	I		IP20		
Installation Environ	ment				
Operating Temperate	ure		-40°C to +80°C		
Humidity			5% to 95%		
Air Pressure			70 - 106 KPA		

Application

ADLER'S ASPD Series PV DC Surge Protection Devices are designed and manufactured complying to PV standard EN50539-11. It is widely used in PV DC combiner boxes, inverters, controllers and DC cabinets. With a rated voltage of 1500 VDC and a maximum discharge current of 40 kA, the integrated high-energy varistor provides highly effective protection against lightning and surge voltages.

Model Numbering Definitions

CONNECTION DIAGRAM

Electrical Principle

DIMENSIONS(mm)

DC Surge Protection Devices

hotovoltaic System Components

- PV Fuse Holders and Accessories
- DC Isolator Switches

• DC Circuit Breakers, MCBs, MCCBs

BH100-01 1000V/1100V Fuse Holder

adler

DIMENSIONS: mm

DESCRIPTION:

BH100-01 touch safe holders are designed for 10x38mm DC midget fuses, especially for use with photovoltaic equipment.

SPECIFICATIONS:

- Rated Voltage: 1000 VDC / 1100 VDC
- Rated Current: up to 30 A / 32 A
- Short Circuit Current Rating(SCCR): DC 30kA@1000VDC / 20kA@1100VDC
- Standards: UL 4248-18, EN 60947-3
- Wire Range: 18 8 AWG
- Max. Torque: 3.4 N·m
- Max. Dissipation: 6W
- Operation Temperature: -40°C to +130°C
- Material Flammability: UL 94-V0
- Mounting: DIN Rail mounting
- Degree of protection IP20
- UL Listed File: E486822
- TUV File: R 50393963

FEATURES:

ADLER BH100-01 touch safe fuse holders are designed for all standard 10x38mm PV fuses such as ADLER A73/A83 series.

Note:

SCCR is limited to the interrupting rating of the installed fuse or 30kA, which ever is less.

BH100-02 1000V/1100V Fuse Holder

DIMENSIONS: mm

DESCRIPTION:

BH100-02 touch safe holders are designed for 10x38mm fuse links and is equipped with a red indicator light. It will light up when the circuit is nterrupted.

SPECIFICATIONS:

- Rated Voltage: 1000 VDC / 1100 VDC
- Rated Current: up to 30 A / 32A
- Short Circuit Current Rating(SCCR): DC 30kA@1000VDC/20kA@1100VDC
- Standards: UL 4248-18, EN 60947-3
- Wire Range: 18 8 AWG
- Max. Torque: 3.4 N·m
- Max. Dissipation: 6W
- Operation Temperature: -40°C to +130°C
- Material Flammability: UL 94-V0
- Mounting: DIN Rail mounting
- Degree of protection IP20
- UL Listed File: E486822

FEATURES:

ADLER BH100-02 touch safe fuse holders are designed for all standard 10x38mm PV fuses such as ADLER A73/A83 series.

Note:

SCCR is limited to the interrupting rating of the installed fuse or 30kA, which ever is less.

DIMENSIONS: mm

BH201 1500V Fuse Holder

DIMENSIONS: mm

DESCRIPTION:

The BH200 touch safe holder is designed for 14x51mm fuse links, especially for use with photovoltaic equipment.

SPECIFICATIONS:

- Rated Voltage: 1500 VDC
- Rated Current: up to 30 A
- Short Circuit Current Rating(SCCR): DC 10kA
- Standards: UL 4248-18, EN 60947-3 (10kA@1500V DC)
- Material Flammability: UL 94-V0
- Mounting: DIN Rail mounting
- Wire Range: 5-13 AWG
- Operation Temperature: -40°C to +150°C
- UL Listed File: E486822
- TUV File: R 50393975

FEATURES:

ADLER BH200 touch safe fuse holders are designed for all standard 14x51mm PV fuses such as ADLER A74 series. With current ratings up to 30A at 1500V DC, this holder provides the most compact and effective solution to protect 1500V DC circuits and equipment in photovoltaic applications.

Note:

SCCR is limited to the interrupting rating of the installed fuse or 10kA, which ever is less.

DESCRIPTION:

The BH201 touch safe holder is designed for 14x51mm fuse links and is equipped with a red indicator light. It will light up when the circuit is interrupted.

SPECIFICATIONS:

- Rated Voltage: 1500 VDC
- Rated Current: up to 30 A
- Short Circuit Current Rating(SCCR): DC 10kA
- Standards: UL 4248-18, EN 60947-3 (10 kA@1500 VDC)
- Material Flammability: UL 94-V0
- Mounting: DIN Rail mounting
- Wire Range: 5-13 AWG
- Operation Temperature: -40°C to +150°C
- UL Listed File: E486822
- TUV File: R 50393975

FEATURES:

ADLER BH201 touch safe fuse holders are designed for all standard 14x51mm PV fuses such as ADLER A74 series. With current ratings up to 30A at 1500V DC, this holder provides the most compact and effective solution to protect 1500V DC circuits and equipment in photovoltaic applications.

Note:

SCCR is limited to the interrupting rating of the installed fuse or 10kA, which ever is less.

PV FUSE HOLDERS AND ACCESSORIES

adler

DIMENSIONS: mm

BH1XL Fuse Holder

DIMENSIONS: mm

DESCRIPTION:

The BH300 touch safe holder is designed for 10x85mm fuse links, especially for use with photovoltaic equipment.

SPECIFICATIONS:

- Rated Voltage: 1500 VDC
- Rated Current: up to 30 A
- Short Circuit Current Rating(SCCR): 50 kA
- Standards: UL 4248-18,EN 60947-3 (10 kA@1500 VDC)
- Material Flammability: UL 94-V0
- Mounting: DIN Rail mounting
- Wire Range: 6-14 AWG
- Operation Temperature: -40°C to +150°C
- UL Listed File: E486822
- •TUV File: R 50394043

FEATURES:

ADLER BH300 touch safe fuse holders are designed for standard 10x85mm PV fuses such as ADLER A75/A85 series and other cylindrical fuses up to Ø10 x 85mm. With current ratings up to 30A at 1500V DC, it can effectively protect 1500 VDC circuits and equipment in photovoltaic applications.

Note:

SCCR is limited to the interrupting rating of the installed fuse or 50kA, which ever is less.

FEATURES:

- Rated Voltage: 1500V DC
- Rated Current: 200A
- Torque: Mounting Plate: 15 N.m
- Terminal Screw(M10): 32 N.m
- Material: Fuse Clip: Silver Plated Copper
- Spring: Zinc Plated Steel
- Mounting Plate: Zinc Plated Steel
- Insulator: Ceramic

55

• Recommend Fuse: AX6

PV FUSE HOLDERS AND ACCESSORIES

adler

DIMENSIONS: mm

BHNH0 Fuse Holder

DIMENSIONS: mm

55

FEATURES:

- Rated Voltage: 1500 VDC
- Rated Current: 630 A
- Torque: Mounting Plate: 15 N.m
- Terminal Screw(M10): 32 N.m
- Material: Fuse Clip: Silver Plated Copper
- Spring: Zinc Plated Steel
- Mounting Plate: Zinc Plated Steel
- Insulator: Ceramic
- Recommend Fuse: AX7, AX8

FEATURES:

- Rated Voltage: 1500 VDC
- Rated Voltage: 200 A
- Torque: Mounting Plate: 15 N.m
- Terminal Screw(M8): 10 N.m
- Material: Fuse Clip: Silver Plated Copper
- Spring: Zinc Plated Steel
- Mounting Plate: Zinc Plated Steel
- Insulator: Ceramic
- Working Temperature: -40 ℃ to +90 ℃
- Storage Temperature: -40 ℃ to +70 ℃

BHT100 1000V Terminal Block

adler

DIMENSIONS: mm

FEATURES:

The insulated BHT100 terminal block is suited for PV installations using ADLER BH100-01, BH100-02 fuse holders.

SPECIFICATIONS:

- Rated Voltage: 1000 VDC
- Rated Current: 60 A
- Torque: 3.0 N.m
- Wire Range: 13 5 AWG
- Operation Temperature: -40°C to +130°C

APPLICATIONS:

At practical application, the module -photovoltaic and combiner box has distance so far, every road wire is longer, at large-scale application, that use a mount of wire, in order reduce use a mount of wire and comfirn every road can be protection, use BHT100 conection terminal, parallel of two fuses.

BHT200 1500V Terminal Block

DIMENSIONS: mm

FEATURES:

The insulated BHT200 terminal block is suited for PV installations using ADLER BH200, BH201 fuse holders.

SPECIFICATIONS:

- Rated Voltage: 1500 VDC
- Rated Current: 60 A
- Torque: 3.0 N.m
- Wire Range: 13 5 AWG
- Operation Temperature: -40°C to +130°C

APPLICATIONS:

At practical application, the module -photovoltaic and combiner box has distance so far, every road wire is longer, at large-scale application, that use a mount of wire, in order reduce use a mount of wire and comfirn every road can be protection, use BHT200 conection terminal, parallel of two fuses.

DIMENSIONS: mm

BHB200 1500V Busbar

DIMENSIONS: mm

BHB300 1500V Busbar

DIMENSIONS: mm

FEATURES:

The insulated BHB100 comb bar is suited for PV installations using ADLER BH100-01, BH100-02 fuse holders.

SPECIFICATIONS:

- Insulated 1-pole comb bar, bridge type
- Rated Voltage: 1000 VDC
- Rated Current: 100 A
- Pitch: 18.0mm, Width: 1.7 mm
- Operation Temperature: -40 °C to +130 °C
- Standard: EN 61439-6: 2012

FEATURES:

The insulated BHB200 comb bar is suited for PV installations using ADLER BH200 and BH201 fuse holders.

SPECIFICATIONS:

- Insulated 1-pole comb bar, bridge type
- Rated Voltage: 1500 VDC
- Rated Current: 100 A
- Pitch: 25.4mm, Width: 5.4 mm
- Operation Temperature: -40 °C to +130 °C
- Standard: EN 61439-6: 2012

FEATURES:

The insulated BHB300 comb bar is suited for PV installations using ADLER BH300 fuse holder.

SPECIFICATIONS:

- Insulated 1-pole comb bar, bridge type
- Rated Voltage: 1500 VDC
- Rated Current: 100 A
- Pitch: 22.3mm, Width: 2.0 mm
- Operation Temperature: -40 °C to +130 °C
- Standard: EN 61439-6: 2012

ADIE Series Enclosed PV DC Isolator Switch

FEATURES:

- Compact structure
- Pre-wired DC Main Switch with MC4(optional)
- UV resistant, IP66 enclosure
- Arcing time < 3ms
- "OFF" position Lockable •
- IEC60947-3 Standard
- 2P, 3P, 4P, 6P
- DC-21B
- Ui:1500V/Uimp:8kV

Waterproof Plug

Sealed Plug

Rated Voltage

Rated Current

Electrical Diagram

Туре

Knob

Brand

13 OFF

Lockable

IP66 Ingress Protection

Application Category

1

2

3 4

5

6

7

8

9

10

11 12 ON

Model Numbering Definitions

Technical Specifications

Technical date	Symbol	М	erit	Unit
Rated operational voltage(DC poles)	Ue			VDC
Rated operational current(DC poles)	le			VDC
Conventional free air thermal current	lth	(53	А
Rated impulse withstand voltage	Uimp		3	kV
Rated short-time withstand current(1s)	Icw		8	kA
Rated short-circuit making capacity	Icm		8	kA
Rated conditional short-circuit current		;	3	kA
Standard Short Circuit Rating		:	5	kA
High-Fault Short Circuit Rating			8	kA
Insulation voltage	Ui	15	600	V
Category DC		DC	-21B	
Number of cycles of operation(With current)		3000times(6T Ty	pe is 2200 times only	')
Number of cycles of operation(With current)		7	000	
Number of DC poles		4	/6	
Method of mounting		Standard TH35-	7.5 DIN rail mounting	
Method of operating		independent	manual operation	
Knob operation force		max	1.4	N.m
Tightening torque terminal screws M4,-max.M4		1.2	1.8	N.m
Tightening torque panel mounting nut,minmax.		2.5	3.0	N.m
Tightening torque M3 screw in the standard black knob	,minmax.	0.5	0.7	N.m
Ambient temperature allowed between		-40	to +70	°C
Storage temperature allowed between		-40	to +85	°C
Maximum relative humidity, without condensation a	at 20℃	g	0	%
Pollution degree			2	
IP rating terminals		IF	66	

Application:

ADLER's ADIE Series DC Isolator Switch with plastic enclosure is designed for 1-20 kw residential and commercial PV systems, it is usually installed between solar panels and inverter. With an arcing time of less than 3 ms the switch provides highest precision and safety. Using highest quality materials and designed to gPV test standards this isolator switch will ensure best accuracy and a long working life.

> **DC Isolator Switches** 33

Wiring Instructions

Contact			DC-21B F	Rating		Poles	Number	Туре	Weight	
Configuration	600V	800V	900V	1000V	1200V	1500V	in series	of Strings	Number	kg/pcs
1 3 5 7										
$\begin{pmatrix} + + + + + + + + + + + + + + + + + + +$	50A						2	1	2H	0.91
1 3 5 7										
$\begin{pmatrix} + + + + + \\ - + + + + + \end{pmatrix}$	32A	23A		16A	10A	5A	2	2	04	0.91
 2 4 6 8		30A		20A						
1 3 5 7										
$\begin{pmatrix} + + + + + + + + + + + + + + + + + + +$				40A	32A	16A	4	1	4S	0.91
2468										
1 3 5 7										
$\begin{pmatrix} + + + + + \end{pmatrix}$				40A	32A	16A	4	1	4B	0.91
 2 4 6 8										
1 3 5 7										
++++					32A	16A	4	1	4T	0.91
2 4 6 8										
1 3 5 7 9 11										
$ \begin{pmatrix} + + + + + + + + + + + + + + + + + + $	32A	23A		16A	10A	5A	2	3	06	1.05
2 4 6 8 10 12		30A		20A						
1 3 5 7 9 11										
++++++	63A						2	1	3H	1.05
2 4 6 8 10 12										
1 3 5 7 9 11										
++++++++++++++++++++++++++++++++++++						32A	6	1	6S	1.05
2 4 6 8 10 12										
1 3 5 7 9 11										
++++++						32A	6	1	6B	1.05
2 4 6 8 10 12										
1 3 5 7 9 11										
+++++				40A			3	2	6T	1.05
2 4 6 8 10 12										

Switching Configurations

Туре	2-pole 4Parlieled poles	4-pole	2-pole with Input on top Output bottom	2-pole with Input and Output bottom	2-pole with Input and Output on top	6-pole	2-pole 6Parlleled poles	2-pole with Input on top Output bottom	2-pole with Input and Output bottom	4-pole with Input and Output bottom
Part Number	2H	04	4S	4B	4T	06	3H	6S	6B	6T
Contacts Wiring diagram	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3 5 7 9 11 2 4 6 8 10 12	1 3 5 7 9 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Switching example	+ -									

Dimensions(mm)

ADIS Series PV DC Isolator Switch

ADIS-1 1200 VDC Isolator Switch

- Rated Voltage 1200 VDC
- Single Hole Mounting Ø22 mm
- Flame-Retardant
- Arcing Time <3 ms
- IEC60947-3
- 4 poles(Single|Double Strings Available) • DC-21B: 16 A,25 A,32 A up to 1200 VDC

ADIS - Standard 1200 VDC Isolator Switch

Application

ADLER's ADIS series DC Isolator Switches are designed for installation in 1-20 kW Inverters, Controller and DC Combiner Boxes.

They are used for Residential or Commercial PV solar power system(on-grid/off-grid). With their arcing time of less than 3 ms they effectively disconnect all standard PV solar systems.

0 Ø 19

ADIS-2

ADIS-3 1200 VDC Isolator Switch with OFF-Lock

- ADIS-2: DIN Rail Mounting;
- ADIS-3: DIN Rail Mounting Door Clutch • OFF - Lock
- Flame-Retardant
- Arcing Time <3 ms
- IEC60947-3
- 4Poles(Single|Double Strings Available)
- DC-21B: 16 A,25 A,32 A up to 1200 VDC

Product Specifications

Electrical Characteristics		
Function		Isolator, Control
Compliance		IEC60947-3
Poles		4P
Max Rated Current		32 A
Rated Operational Voltage	Ue	1200 VDC
Rated Current	In	16 A/25 A/32 A
Rated Insulated Voltage	Ui	1200 VDC
Rated Impulsed Withstand Voltage	Uimp	8 kV
Service Life/Cycle Operation		
Mechanical		20000
Electrical		500
Installation Environment		
Size of Terminal Screw		M4
Tightening Torque	Nm	2.5
Maximum Cable Cross Sections	mm²	4-16
Ingress Protection		IP20
Storage Temperature		-25°C to +85°C

Model Numbering Definitions

PV DC ISOLATOR SWITCHES

Switching Configurations

Model	2-pole	2-pole 4 Paralleled Poles	4-pole	4-pole with Input on top Output bottom	4-pole with Input and Output bottom	4-pole with Input and Output on top
ADIS-1/2/3 16 A	2	2H	4	4S	4B	4T
ADIS-1/2/3 25 A	2	2H	4	4S	4B	4T
ADIS-1/2/3 32 A	2	2H	4	4S	4B	4T
Contacts Wiring graph	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Switching example						

Wiring Instructions

Contacts Configuration	600V	800V	1000V	1200V	Poles in series	Number of Strings	Code	Weight kg/PCS
1 3	16A	16A	9A		2	1	DR2	0.23
	25A	20A	11A	9A	2	1	DR2	0.23
7 7	32A	23A	13A	13A	2	1	DR2	0.23
2 4								
1 3 5 7	29A	16A	9A		2	1	DR2H	0.25
	45A	20A	11A	9A	2	1	DR2H	0.25
	50A	23A	13A	13A	2	1	DR2H	0.25
2 4 6 8								
1 3 5 7	16A	16A	9A		2	2	DR4	0.23
	25A	20A	11A	9A	2	2	DR4	0.23
	32A	23A	13A	13A	2	2	DR4	0.23
2 4 6 8								
1 3 5 7	16A	16A	16A	16A	4	1	DR4S	0.24
	25A	25A	25A	25A	4	1	DR4S	0.24
	32A	32A	32A	32A	4	1	DR4S	0.24
2 4 6 8								
1 3 5 7	16A	16A	16A	16A	4	1	DR4B	0.24
	25A	25A	25A	25A	4	1	DR4B	0.24
	32A	32A	32A	32A	4	1	DR4B	0.24
2468								
1 3 5 7	16A	16A	16A	16A	4	1	DR4T	0.24
	25A	25A	25A	25A	4	1	DR4T	0.24
	32A	32A	32A	32A	4	1	DR4T	0.24
2 4 6 8								

adler

Dimensions(mm)

ADIS-1

ADIS-2 DIN Rail Mounting

ADIS-3 DIN Rail Mounting, Door Clutch

adler

ADII Series PV Inverter DC Isolator Switch

Product Specifications

ADII-1 63 A DC Isolator Switch

- Panel Mounting
- Compact Structure
- Arcing time < 3 ms
- Busbar Design, Easy Installation
- Flame-Retardant
- Special Modular Design
- IEC60947-3 Standard
- DC-21B: 3 A, 16 A, 32 A up tp 1500 VDC

ADII-2 63 A DC Isolator Switch

- Din Rail Mounting And Fixed Mounting
- Compact Structure
- Arcing Time < 3 ms
- Busbar Design, Easy Installation
- Flame-retardant
- Special Modular Design
- IEC60947-3 Standard
- DC-21B: 3 A,16 A,32 A up tp 1500 VDC

Technical data	Symbol		Merit	Unit
Rated operational voltage (DC poles)	Ue			
Rated operational current (DC poles)	le			
Conventional free air thermal current	lth		63	А
Rated impulse withstand voltage	Uimp		8	kV
Rated short-time withstand current (1s)	lcw		8	kA
Rated short-circuit making capacity	Icm		8	kA
Rated conditional short-circuit current			8	kA
Standard Short Circuit Rating			5	kA
High-Fault Short Circuit Rating			8	kA
Insulation voltage	Ui		1500	V
Installation Environment				
Utiizatin category DC			DC-21B	
Number of cycles of operation(With current)	3000 times (6T Type is 2200 times	only)	
Number of cycles of operation(Without current)			7000 times	
Number of DC poles			1/2/3/4/6/8	
Method of mountig		Panel mounting	Standard TH35-7.5 DIN	I rail mounting
Method of operatin		inde	pendent manual operation	ı
Knob operation force		max.	1.4	Nm
Tightening torque terminal screws M4 , min m	ax.M4	1.2	1.8	Nm
Tightening torque panel mountig nut, min max	κ.	2.5	3.0	Nm
Tightening torque M3 screw in the standard black know	ob, min max.	0.5	0.7	Nm
Ambient temperature allowed between			-40 °C ~ +70°C	
Storage temperature allowed between			-40°C ~ +85°C	
Maximum relative humidity, without condensation	On at 20°C		90%	
Pollution degree			2	
IP rating terminals			IP20	
IP rating gland of the shaft in case of single hole pa	anel mounting		IP66	

Application

ADLER's ADII series DC Isolator Switches are designed for PV solar power systems, in applications between1 kW to 20 kW, especially for use in inverters, controllers and solar DC combiner boxes. The ADII can operate at a maximum Voltage of 1500 VDC, with rated currents of 32 A, combining innovative design with a compact structure.

Preliminary datasheet, subject to change! Please find latest updates for download on www.adlerelectric.com

2P

44.7 60.0

Switching Configurations

Туре	1-pole	2-pole	3-pole	2-pole 4Parlleled poles	4-pole	2-pole with Input on top Output bottom	2-pole with Input and Output bottom	2-pole with Input and Output on top
Part Number	01	02	03	2H	04	4S	4B	4T
Contacts Wiring diagram	1	1 3]] 2 4	1 3 5 1 1 1 1 1 1 1 1		1 3 5 7 + + + 2 4 6 8			
Switching example			† - † \					

Туре	6-pole	2-pole 6Parlieled poles	2-pole with Input on top Output bottom	2-pole with Input and Output bottom	4-pole with Input and Output bottom	8-pole	2-pole 8Parlieled poles
Part Number	06	ЗН	6S	6B	6T	08	4H
Contacts Wiring diagram	1 3 5 7 9 11 + + + + + + + + + + + + + + + + + + +	1 3 5 7 9 11	1 3 5 7 9 11 1 1 2 4 6 8 10 12	1 3 5 7 9 11 1 1 1 2 4 6 8 10 12	1 3 5 7 9 11 + + + + + 2 4 6 8 10 12	1 3 5 7 9 11 13 15 1 1 1 2 4 6 8 10 12 14 16	1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16
Switching example							

Wiring Instructions

Contact				l	DC-21B I	Rating		Poles		Туре	Weight
Configuration	500V	600V	800V	900V	1000V	1200V	1500V	in series	of Strings	Number	kg/pcs
1											
		12A	8A	6A	4A			2	1	02	0.18
2											
1 3											
$\begin{pmatrix} & & \\ & & \end{pmatrix}$	32A	32A	25A	20A	16A	16A	5A	2	1	02	0.18
2 4			30		20A						
1 3 5											
$\begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$		20A	16A	13A	11A	9A	3A	2	2	03	0.18
2 4 6											
1 3 5 7											
$\begin{pmatrix} & & \\ & $		50A						2	1	2H	0.26
2 4 6 8											
1 3 5 7											
$\begin{pmatrix} + + + + - \\ - + + + - \\ - + + - \\ - + + - \\ - + + - \\ - + + - \\ - + + - \\ - + + - \\ - + - \\ \\ - + - \\ $	32A	32A	23A		16A	10A	5A	2	2	04	0.26
2468			30		20A						
1 3 5 7											
					40A	32A	16A	4	1	4S	0.26
2468											
1 3 5 7											
					40A	32A	16A	4	1	4B	0.26
2468											
1 3 5 7											
						32A	16A	4	1	4T	0.26
2 4 6 8											

Preliminary datasheet, subject to change! Please find latest updates for download on www.adlerelectric.com

Wiring Instructions

Contact			DC-2	21B Rat	ting			Poles	Number	Туре	Weight kg/pcs
Configuration	500V	600V	800V	900V	1000V	1200V	1500V	in series	of Strings	Number	
1 3 5 7 9 11											
	32A	32A	23A		16A	10A	5A	2	3	06	0.33
2 4 6 8 10 12			30A		20A						
1 3 5 7 9 11											
	63A	63A						2	1	3Н	0.33
2 4 6 8 10 12											
1 3 5 7 9 11											
							32A	6	1	6S	0.33
2 4 6 8 10 12											
1 3 5 7 9 11											
77777							32A	6	1	6B	0.33
2 4 6 8 10 12											
1 3 5 7 9 11 					10.0			0			
					40A			3	2	61	0.33
	204	204	004	204	100	104	F A	2		00	0.4
	32A	32A	23A	20A	16A	TUA	ЪА	2	4	08	0.4
			624					1	1	414	0.4
			03A					4	1	4H	0.4

ADIR Series PV Rail-Mount DC Isolator Switch

adler

Features

- Non-polar design
- Functions: Unfrequent operation and Isolation
- Rated Current: Up to 63 A
- Rated Voltage: 1200 VDC
- Flash Barrier for better system safety
- In Compliance with: IEC60947-3/GB14048-3

Product Specifications Electrical Characteristics ADIR Model Comply With IEC60947-3/GB14048.3 Poles 1P 2P 3P 4P Rated Working Voltage 300 VDC 600 VDC 900 VDC 1200 VDC Ue Max Rated Current 63 A Rated Current 25 A,40 A,63 A In 1200 VDC Rated Insulated Voltage Ui Rated Impulsed Voltage Uimp 6 kv Service Life/cycle Operation Actual Value 20000 Mechanical Standard Value 8500 Actual Value 4000 Electrical Standard Value 1500 Isolator Function 6KY Installation Environment Ingress Protection All Sides IP40, Connection Terminal IP20 **Terminal Cross Section** 2.5-25 mm² -25°C to +70°C Working Temperature -40°C to +85°C Storage Temperature Resistance to Humidity And Heat II (at humidity level of 55 %, relative humidity 95 %) 2.6 IEC60068 Resistance to Shock 2.27 IEC60068 Resistance to Impack

Product Architecture

- **2** Type
- 3 Rated Current
- 4 Rated Voltage
- 5 Standard Code
- 6 Certificate Symbol
- 7 Indicator
- 8 Wiring Diagram

Model Numbering Definitions

Application

ADLER'S ADIR Series PV Rail-Mounted DC Isolator switches are mainly used in PV solar power systems, applied in DC solar combiner box, controller etc. At operational voltage of up to 1200 VDC and currents of up to 63 A, they provide effective disconnection and Anti-reflux protection. The scientific design of the arc-extinguishing system increases the safety of the PV system.

PV dc isolator switches

Wiring Instructions

Dimensions(mm)

DC Isolator Switches 3

ADIM Series PV Moulded Case DC Isolator Switch

Features

- High Insulation Performance
- Ideal for random operation and DC isolation
- Rated Voltage up to 1200 VDC
- Rated Current: 125 A,250 A,400 A,630 A
- IEC60947-3, GB14048-3

Product Specifications

ADIM seri	es PV DC Mould	ed Case	Isolator Switch							
Туре			ADIM-125	ADIM-250	ADIM-400	ADIM-630				
Poles			4P							
Max Rated	d Current		125 A	250 A	400 A	630 A				
Electrical	Characteristics									
Rated Ope	erational Voltage	Ue		1200 VDC						
Rated Operational Current In(A)			60/80 100/125	125/160 200/250	250/300/315 350/400	400/500/630				
Rated Insu	ulated Voltage	Ui		1200	VDC					
Impulsed \	Withstand Voltage	e Uimp		8 k	۲V					
1 Min Power	Frequency Withstan	d Voltage		3.8	kV					
Control Ar	nd Indication									
	Direct (F	RHD)	Optional							
Control	Extende	d(ERH)	Optional							
woue	MOD		Optional							
Shunt Rel	ease (SHT)		Optional							
Auxiliary F	Release		Optional							
Terminal E	End Cover		Yes							
Interphase	e Barriers		Yes							
Service L	ife/Cycle Operati	on								
Mechanic	al		14000	14000	5000	5000				
Electrical			5000	5000	1500	1500				
Size (L x W x H)			150x122x92	165x140x89	258x198x107	282x282x115				
Ingress Protection			All Sides IP40 ,Connection Terminal IP20							
Installatio	n Environment									
Comply w	ith		IEC60947-3/GB14048.3							
Storage Te	emperature		-45°C to +70°C							

Model Numbering Definitions

Application

ADLER'S ADIM PV DC Isolator Switches are designed for protection in large scale solar power systems and for operation in DC combiner boxes, inverter equipment and DC power distribution cabinets. They support an operational voltage of up to 1200 VDC and rated currents of up to 630 A to effectively isolate DC current.

Product Architecture

- 1 Brand
- 2 Type
- 3 Rated Current
- 4 Rated Voltage
- 5 Rated Short-time Withstand Current
- 6 Standard Code
- 7 Certificate Symbol
- 8 Wiring Diagram

DC Isolator Switches 4

			PV	ISOLATOR SWITCHES
	adler®			
Туре	ADIM-125A	ADIM-250A	ADIM-400A	ADIM-630A

Picture				
---------	--	--	--	--

Wiring Instructions

Dimensions(mm)

125 A

250 A

400 A

630 A

Preliminary datasheet, subject to change! Please find latest updates for download on www.adlerelectric.com

Features

- Nonpolarity
- High Short-Circuit / Breaking Capacity
- Functions: Overload, Short Circuit, Unfrequent Operation and, Antireflux Protection
- Rated Voltage: 1200 V, Ultimate Breaking Capacity: 6 kA
- Rated Current: 63 A
- Comply with : IEC60947-2/GB14048-2

Parameter

Electrical Ch	aracteristics								
Туре			ADCR						
Comply with			IEC60947-2/GB14048.2						
Poles			1P	2P	3P	4P			
Rated Worki	ng Voltage	Ue	300 VDC	600 VDC	900 VDC	1200 VDC			
Max Rated C	Current			63	BA				
Rated Curren	nt	In	4 A, 6 A, 10	A,13A,16A,20	A,25 A,32 A,40	A,50 A,63 A			
Rated Insula	ted Voltage	Ui		1200	VDC				
Rated Impuls	sed Voltage	Uimp		4	kV				
Ultimate Bre	aking Capacit	y Icu		61	κV				
Run Breaking	g Capacity	lcs		100) %				
Curve Type			В						
Tripping Type	е		Thermal Magnetic Type						
Service Life/cycle Operation									
Mashaniaal	Actual Value		20000						
Mechanical	Standard Value		8500						
Electrical	Actual Value		4000						
Electrical	Standard Val	ue	1500						
Installation E	Invironment								
Ingress Prote	ection		All Sides IP40 ,Connection Terminal IP20						
Terminal Cro	ss Section		2.5-25 mm ²						
Working Tem	nperature		-25°C to +70°C						
Storage Tem	perature		-40°C to +85°C						
Resistance to Humidity And Heat			II (at humidity levels up to 55 %, Relative Humidity 95 %)						
Resistance to	o Shock		2.6 IEC60068						
Resistance to	o Impack		2.27 IEC60068						

Product Architecture

2 Type

- 3 Rated Current
- 4 Rated Voltage
- 5 Breaking Capacity
- 6 Standard
- 7 Indicator
- 8 Wiring Diagram
- **Model Numbering Definitions** ADCR 1 L Max Rated Product Rated Rated Poles Code Current Voltage (*100) Current 1: 1 Pole 03: 300 V **PV Rail Mount** 06: 600 V 09: 900 V 12: 1200 V 2:2 Poles Circuit 63 A 3 A 3: 3 Poles Breaker 4:4 Poles

Application

ADLER's ADCR Series PV Circuit Breakers are mainly applied to DC solar combiner box ,Controller etc. The main function include overload protection, Anti-reflux protection and short-circuit protection. The scientific design of the arc-extinguishing system increase the safety of the solar system. They support an operational voltage of up to 1200 VDC and rated current of up to 63 A.

Wiring Method

adler

Characteristic Curve

Dimensions(mm)

Dimensions(mm)

DC Isolator Switches 4

ADCM Series PV Moulded Case DC Circuit Breakers

Features

- High Short-Circuit/Breaking Capacity
- Protection Functions: Overload, Short circuit, Unfrequent Operation
- Rated Voltage up to 1000 VDC
- Rated Current 125 A, 250 A, 400 A, 630 A
- IEC60947-2, GB14048-2Easy Installation

Product Specifications

ADCM Se	ries									
Туре				ADCM-125	ADCM-250	ADCM-400	ADCM-630			
Poles				4P	4P	4P	4P			
Max Rated	l Current			125 A	250 A	400 A	630 A			
Electrical	Characte	eristics								
Rated Ope	erational	Voltage	Ue	1000 VDC	1000 VDC	1000 VDC	1000 VDC			
Rated Ope	erational	Current	In(A)	63/80 100/125	63/80 125/160 250/300/315 100/125 200/250 350/400 400/5					
Rated Insu	Ilation Vo	ltage	Ui		1000	VDC				
Impulsed \	Visthstar	nd Voltage	€Uimp		81	٢V				
1 Min Power	Frequency	Withstand	Voltage	3.8 kV	3.8 kV	3.8 kV	3.8 kV			
Ultimate Br	eaking C	apacity	lcu	20 kA	20 kA	20 kA	20 kA			
Run Break	ing Capa	acity	lcs	15 kA	15 kA	15 kA	15 kA			
Protection										
Tripping Ty	/pe			Thermal Magnetic Type						
Control Ar	nd Indica	tion								
	Monual	Direct (R	RHD)	Optional						
Control	Manual	Extende	d(ERH)	Optional						
Mode	MOD			Optional						
Shunt Rele	ease (SH	T)		Optional						
Auxiliary R	elease			Optional						
Terminal E	nd Cove	r		Yes						
Interphase	Barriers			Yes						
Service Li	fe/Cycle	Operatio	on							
Mechanica	al			14000	14000	5000	5000			
Electrical				5000	5000	1500	1500			
Size (L x V	/ x H)			150x122x92	165x140x89	257x198x107	282x282x115			
Ingress Pr	otection			All Sides IP40 ,Connection Terminal IP20						
Installation	n Enviro	nment								
Comply W	ith			IEC60947-2/GB14048.2						
Storage Temperature				-25°C-+70°C						

Model Numbering Definitions

Application

ADLER's ADCM series PV DC Moulded Case Circuit Breakers are mainly used in large scale solar power systems, and are installed in DC combiner boxes, inverter equipment and DC power distribution cabinets. They support a voltage of up to 1000 VDC, and rated currents of up to 630 A, for optimal protection against overloads and short circuit protection.

Product Architecture

- 1 Brand
- 2 Type
- 3 Rated Current
- 4 Rated Voltage
- 5 Breaking Capacity
- 6 Operation Breaking Capacity
- 7 Standard Code
- 8 Certificate Symbol
- 9 Wiring Diagram
- 10 Characteristic Curve

Characteristic Curve

adler

400A

150

<u>+ C</u>

630A

0 0

0 0

HIGH SPEED FUSES AND SYSTEM PROTECTION IATF 16949 ISO 9001-2015

ADLER Elektrotechnik Leipzig GmbH

Zschochersche Str. 91 04229 Leipzig GERMANY

Tel. : +49 341- 946 98772 Fax : +49 341- 94698771 HRB 32327/ D.C. Leipzig Email: info@adlerelektro.de info@adlerelectric.com

www.adlerelectric.com www.adlerelektro.de

ADLER global network

- ADLER Elektrotechnik Leipzig GmbH (Headquarters)
- O ADLER Regensburg (Engineering)
- ADLER Elektrotechnik Xi'an Co.,Ltd.(Manufacturing)
- **Q** ADLER Songshan Lake Dongguan (Testing center)