

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1BVW-SD08

Introduction

The HAH1BVW family is for the electronic measurement of DC, and low frequency current in high power and low voltage automotive

applications with galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HAH1BVW family gives you the choice of having different current measuring ranges in the same housing.

Features

- Ratiometric transducer
- · Open Loop transducer using the Hall effect
- Low voltage application
- Unipolar +5 V DC power supply
- Primary current measuring range ±1200 A (high range) ±350 A (low range)
- Maximum RMS primary admissible current: defined by busbar to have T < +150 °C
- Operating temperature range: -40 °C < T < 125 °C
- Output voltage: full ratio-metric (in sensitivity and offset).

Special feature

Dual output.

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- · Very low thermal sensitivity drift
- Galvanic separation
- Non intrusive solution.

Automotive applications

• Battery Management.

Principle of HAH1BVW Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density *B*, contributing to the rise of the Hall

voltage, is generated by the primary current I_{p} to be measured.

The current to be measured $I_{\rm p}$ is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, B is proportional to:

$$B(I_{\rm P}) = a \times I$$

The Hall voltage is thus expressed by:

$$V_{\rm H} = (c_{\rm H}/d) \times I_{\rm H} \times a \times I_{\rm H}$$

Except for I_{P} , all terms of this equation are constant. Therefore:

$V_{\rm H} = b$	$r \times I_{P}$
-----------------	------------------

 $I_{\rm H}$

- constant а b
- constant
- Hall coefficient C_{H} d
 - thickness of the Hall plate current across the Hall plates

The measurement signal V_{μ} amplified to supply the user output voltage or current.

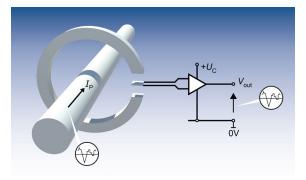
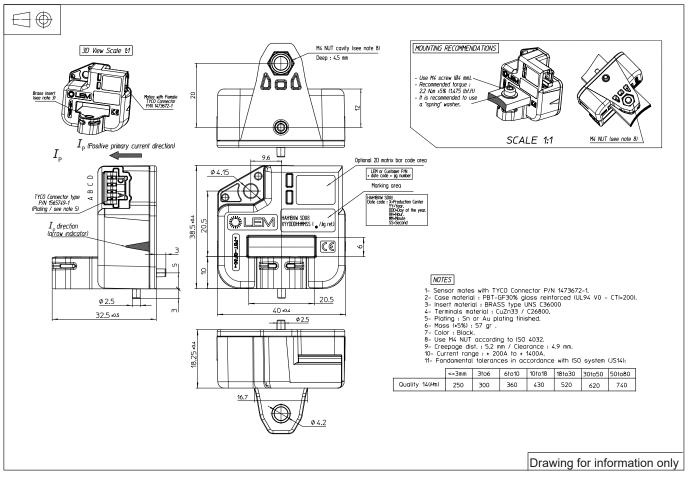


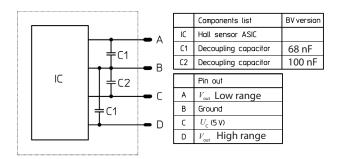
Fig. 1: Principle of the open loop transducer.


N° 52.K6.99.D08.0

17September2018/version 0

HAH1BVW-SD08

Dimensions HAH1BVW SD08 (in mm)


Mechanical characteristics

- Plastic case PBT GF 30
- Magnetic core
 Iron silicon alloy
- Mass 57 g
- Electrical terminal coating Brass tin plated

Mounting recommendation

Connector type AMP 1473672-1

Electronic schematic

Remarks

• $V_{\rm out}$ > 2.5 when $I_{\rm P}$ flows in the direction of the arrow.

System architecture (example)

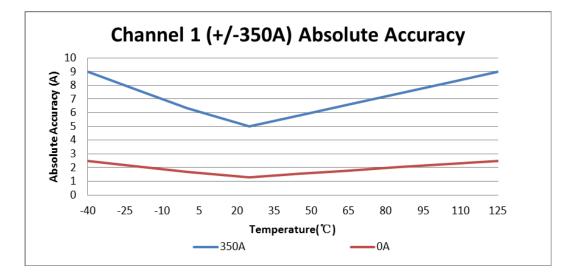
 $R_{\rm L}$ > 10 k Ω optional resistor for signal line diagnostic

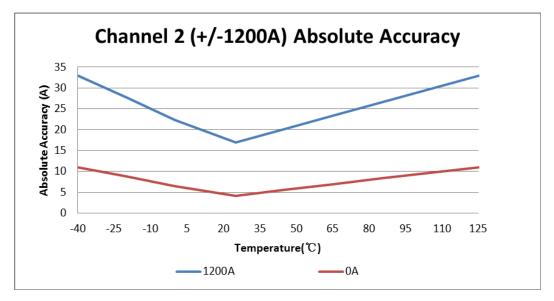
$V_{\sf out}$	Diagnostic				
Open circuit	V _{IN} ≤ 0.15 V				
Short GND	V _{IN} ≤ 0.15 V				

 $C_1 \leq 100 \text{ nF EMC protection}$

RC Low pass filter EMC protection (optional)

HAH1BVW-SD08

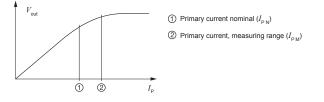

Absolute ratings (not operating)


Parameter	Symbol	Unit	Specification			Conditions	
Faiallietei			Min	Typical	Max	Conditions	
Maximum supply voltage	$U_{\rm Cmax}$	V			14		
Maximum reverse supply voltage	$U_{\rm Cmax}$	V	-14				
Maximum output Voltage	$V_{\rm outmax}$	V	-14		14	V _{out} Reverse / Forward voltage	
Maximum output Current	I _{out max}	mA	-10		10		
Ambient storage temperature	Ts	°C	-40		125		
Electrostatic discharge voltage (HBM)	$U_{\rm ESD}$	kV			8		
Maximum admissible vibration (random RMS)	γ _{max}	m∙s-²			96.6	10 to 2000 Hz, -40 °C to 125 °C	
RMS voltage for AC insulation test	$U_{\rm d}$	kV			2.5	50 Hz, 1 min	
Creepage distance	d _{Cp}	mm	4.85				
Clearance	d _{ci}	mm	4.85				
Comparative traking index	CTI		PLC	C3 (175 V -	250 V)		

Operating characteristics in high/low range ($I_{\rm PN}$)

Doromotor	Symbol	Unit	Specification			Conditions			
Parameter	Symbol		Min	Typical	Мах	Conditions			
Electrical Data									
Primary current, measuring range, high range	I _{PM}	A	-1200		1200				
Primary current, measuring range, low range	I _{PN}	A	-350		350				
Supply voltage	Uc	V	4.5	5	5.5				
Ambient operating temperature	T _A	°C	-40		125				
Output voltage	V _{out}	V	$V_{\rm out} = ($	$(U_{\rm c}/5) \cdot (V_{\rm o})$	+ $G \cdot I_{P}$)				
Sensitivity high range	G	mV/A		1.67		@ T _A = 25 °C			
Sensitivity low range	G	mV/A		5.71		@ T _A = 25 °C			
Offset voltage	Vo	V		2.5					
Output resolution		mV		2.5					
Output clamping high voltage	V _{sz}		4.74	4.75		@ U _c = 5 V			
Output clamping low voltage	V _{sz}			0.25	0.26	@ U _c = 5 V			
Ourset and the	T			14		@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V			
Current consumption	I _c	mA			20				
Load resistance	RL	KΩ	10			@ T _A = 25 °C			
Output internal registerios	R _{out}	Ω		1		@ T _A = 25 °C			
Output internal resistance					10				
		Perf	ormanc	e Data					
Ratiometricity error	ε _r	%		± 0.2					
Sensitivity error	ε _G	%		± 1		@ T _A = 25 °C			
Electrical offset voltage	V _{oe}	mV		± 2.5		@ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V			
Magnetic offset voltage	V _{om}	mV		± 2		@ U _c = 5 V, @ T _A = 25 °C			
Linearity error	εL	%	- 1		1	% of full scale			
Average temperature coefficient of V_{OE}	TCV	mV/°C		± 0.04					
Average temperature coefficient of G	TCG AV	%/°C		± 0.02					
Step response time @ 90 %	t _r	ms			10				
Frequency bandwidth	BW	Hz		70		@ - 3 dB			
Peak-to-peak noise voltage	V _{no pp}	mV			10	DC to 1 MHz			
Output RMS noise voltage	V _{no rms}	mV			1.6				
Start-up time	t _{start}	ms			1				
Setting time after overload	ts	ms			10				

	Channel1 Overall Accuracy							
Temperature (°C)	Ac	curacy at ±3	50A	Accuracy at 0A				
-40	9A	51.39 mV	2.57 %	2.5A	14.28 mV	0.71 %		
25	5A	28.55 mV	1.43 %	1.3A	7.423 mV	0.37 %		
125	9A	51.39 mV	2.57 %	2.5A	14.28 mV	0.71 %		


	Channel2 Overall Accuracy							
Temperature (°C)	Acc	uracy at ±12	00A	Accuracy at 0A				
-40	33A	55.11 mV	2.75 %	11A	18.37 mV	0.92 %		
25	17A	28.39 mV	1.42 %	4.2A	7.014 mV	0.35 %		
125	33A	55.11mV	2.75 %	11A	18.37 mV	0.92 %		

HAH1BVW-SD08

PERFORMANCES PARAMETERS DEFINITIONS

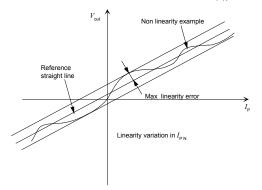
Primary current definition:

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of a product.

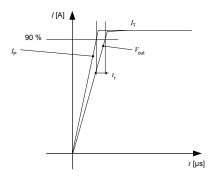
Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.


Magnetic offset:

The magnetic offset is the consequence of an any current on the primary side. It's defined after a stated excursion of primary current.

Linearity:


The maximum positive or negative discrepancy with a reference

straight line $V_{out} = f(I_p)$. Unit: linearity (%) expressed with full scale of I_{PN} .

Response time (delay time) *t*_{*i*}:

The time between the primary current signal $(I_{P N})$ and the output signal reach at 90 % of its final value.

Sensitivity:

The transducer's sensitivity G is the slope of the straight line

 $V_{\text{out}} = f(I_{\text{P}})$, it must establish the relation:

 $V_{\rm out} (I_{\rm P}) = U_{\rm C}/5 (G \times I_{\rm P} + V_{\rm O})$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 $^\circ\text{C}.$

The offset variation I_{OT} is a maximum variation the offset in the temperature range:

$$I_{OT} = I_{OE} \max - I_{OE} \min$$

The offset drift TCI_{OEAV} is the I_{OT} value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 $^{\circ}$ C.

The sensitivity variation G_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range: G_{τ} = (Sensitivity max – Sensitivity min) / Sensitivity at 25 °C.

The sensitivity drift TCG_{AV} is the G_{τ} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0 A$:

The offset voltage is the output voltage when the primary current is zero. The ideal value of $V_{\rm o}$ is $U_{\rm c}/2$. So, the difference of $V_{\rm o} - U_{\rm c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem. com).

Environmental test specifications:

Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet.