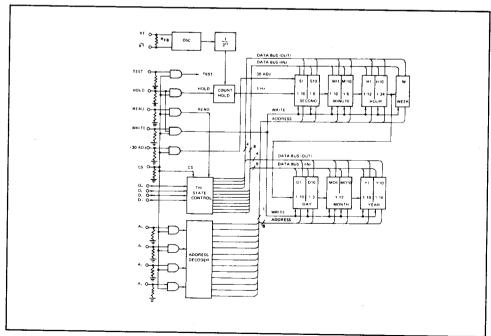
MSM5832RS

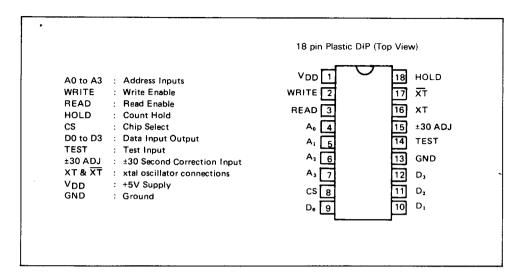
REAL TIME CLOCK/CALENDAR

GENERAL DESCRIPTION


The MSM5832RS is a metal-gate CMOS Real Time Clock/Calendar for use in bus-oriented microprocessor applications. The on-chip 32,768Hz crystal controlled oscillator time base is divided to provide addressable 4-bit I/O data of SECONDS, MINUTES, HOURS, DAY-OF-WEEK, DATE, MONTH, and YEAR. Data access is controlled by 4-bit address, chip select, read, write and hold inputs. Other functions include 12H/24H format selection, leap year identification and manual ±30 second correction.

The MSM5832RS normally operates from a 5V \pm 5% supply. Battery backup operation down to 2.2V allows continuation of time keeping when main power is off. The MSM5832RS is offered in an 18-lead dual-in-line plastic (RS suffix) package.

FEATURES


- *7 Function SECOND, MINUTE, HOUR, DAY, DAY-OF-WEEK, MONTH, YEAR
- Automatic leap year calendar
- 12 or 24 hour format
- ±30 second error correction
- · 4-BIT DATA BUS
- 4-BIT ADDRESS
- · READ, WRITE, HOLD, and CHIP SELECT inputs
- Reference signal outputs 1024, 1, 1/60, 1/3600Hz
- * 32.768kHz crystal controlled operation
- Single 5V power supply
- Back-up battery operation to V_{DD} = 2.2V
- Low power dissipation
 90 μW Max. at V_{DD} = 3V
 2.5 mW Max. at V_{DD} = 5V
- · 18 pin plastic DIP (DIP18-P-300)

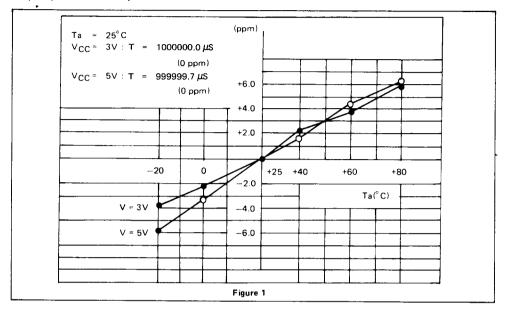
FUNCTIONAL BLOCK DIAGRAM

5

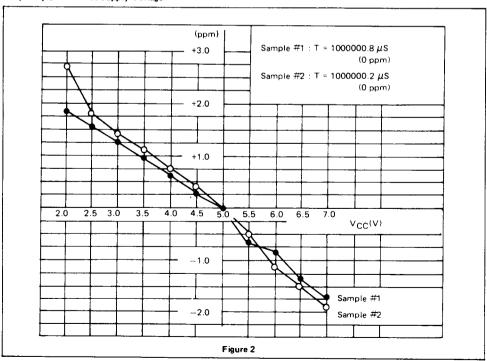
PIN CONFIGURATION

REGISTER TABLE

	Address Input			Register	Data Input/Output			utput	Data	Remarks
Αo	Aı	A ₂	A ₃	Name	Do	D_1	D ₂	D ₃	Limit	
0	0	0	0	S1	*	*	*	*	0 ~ 9	S1 or S10 are reset to zero irrespective of input data D0—D3 when write
1	o	0	0	S10	*	*	*		0 ~ 5	instruction is executed with address selection.
0	1	0	0	MI1	*	*	*	*	0~9	
1	1	0	0	MI10	*	*	*		0 ~ 5	
0	0	1	0	H1	*	*	*	*	0~9	
1	0	1	0	H10		*	t	t	0~1	D2 = "1" for PM D3 = "1" for 24 hour format D2 = "0" for AM D3 = "0" for 12 hour format
0	1	1	0	W	*	*	*		0~6	
1	1	1	0	D1	*	*	*	*	0~9	
0	0	0	1	D10	*	*	†		0~3	D2 = "1" for 29 days in month 2 D2 = "0" for 28 days in month 2 (2)
1	0	0	1	MO1	*	*	*	*	0~9	
0	1	0	1	MO10	*				0 ~ 1	
1	1	0	1	Y1	*	*	*	*	0~9	
0	0	1	1	Y10	*	*	*	*	0~9	


^{(1) *}data valid as "0" or "1".

Blank does not exist (unrecognized during a write and held at "0" during a read) tdata bits used for AM/PM, 12/24 HOUR and leap year.


⁽²⁾ If D2 previously set to "1", upon completion of month 2 day 29, D2 will be internally reset to "0".

OSCILLATOR FREQUENCY DEVIATIONS

Frequency Deviation vs Temperature

Frequency Deviation vs Supply Voltage

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	−0.3 ~ 7.0	V
Input voltage	VI	−0.3 ~ V _{DD} + 0.3	V
Data I/O voltage	Vσ	-0.3 ~ V _{DD} + 0.3	V
Storage Temperature	Tstg	55 ∼ 150	°c

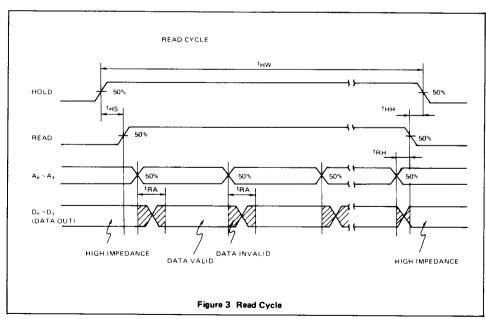
OPERATING CONDITIONS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply Voltage	V _{DD}	4.5	5	7	٧	
Standby Supply Voltage	VDH	2.2	_	7	V	
·	VIH	3.6	_	۷ _{DD}	V	VDD = 5V ± 5%
Input Signal Level	VIL	-0.3	_	8.0	٧	Respect to GND
Crystal Oscillator Freq.	f(XT)	-	32.768	-	kHz	
Operating Temperature	ТОР	-30	-	+85	°C	

DC CHARACTERISTICS

 $(V_{CC} = 5V \pm 5\%; T_A = -30 \text{ to } +85^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
()	Iн	10	25	50	μΑ	V _{IN} =5V, V _{DD} =5V
Input Current (1)	111	_	_	-1	μΑ	VIN = OV
Data I/O Leakage Current	ILD	-10	_	10	μΑ	V _{I/O} = 0 to V _{DD} CS = "0"
Output Low Voltage	VOL	_	_	0.4	v	I _O = 1.6 mA, CS = "1", READ = "1"
Output Low Current	IOL	1.6	-	-	mA	V _O = 0.4V, CS = "1", READ = "1"
	IDDS	_	15	30	μΑ	V _{CC} = 3V, Ta = 25°C
Operating Supply Current	ממו	_	100	500	μΑ	V _{CC} = 5V, Ta = 25°C


(1) XT, $\overline{\text{XT}}$ and $D_0 \sim D_3$ excluded.

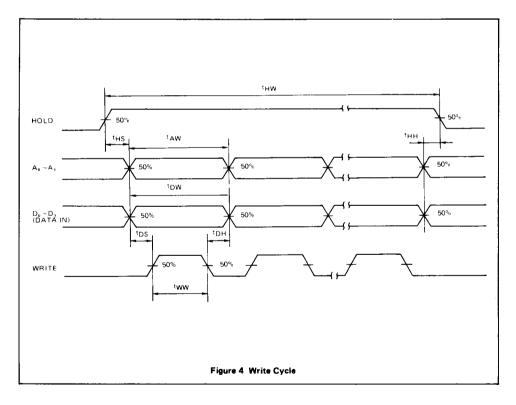
SWITCHING CHARACTERISTICS

(1) READ mode

(Vnn	=	5V	+5%	Ta=	25°C)

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
HOLD Set-up Time	tHS		150	_	_	μs
HOLD Hold Time	tHH		0	_	_	μs
HOLD Pulse Width	tHW		_	-	990	ms
HOLD "L" Hold Time	tHL		130	_	_	μs
READ Hold Time	t _{RH}		0	_	_	μs
READ Set-up Time	t _{RS}		0	_		μs
READ Access Time	t _{RA}	R _{PULL} . _{UP} = 5KΩ C _L = 15pF	_	-	6	μς
ADDRESS Set-up Time	tAS		3	-	_	μs
ADDRESS Hold Time	t _A H		0.2	-	-	μs
READ Pulse Width	tRW	R _{PULL-UP} = 5KΩ C _L = 15pF	2	-	-	μs
DARA Access Time	†AC	R _{PULL-UP} = 5KΩ C _L = 15pF	-	-	0.6	μs
OUTPUT Disable Time	toff	R _{PULL-UP} = 5KΩ C _L = 15 pF	_	_	0.6	μs
CS Enable Delay Time	tCS1		_	_	0.6	μs
CS Disable Delay Time	tCS2		_	-	0.6	μs

Notes: 1. A Read occurs during the overlap of a high CS and a high READ.


2. CS may be a permanent "1", or may be coincident with HOLD pulse.

SWITCHING CHARACTERISTICS

(2) WRITE mode

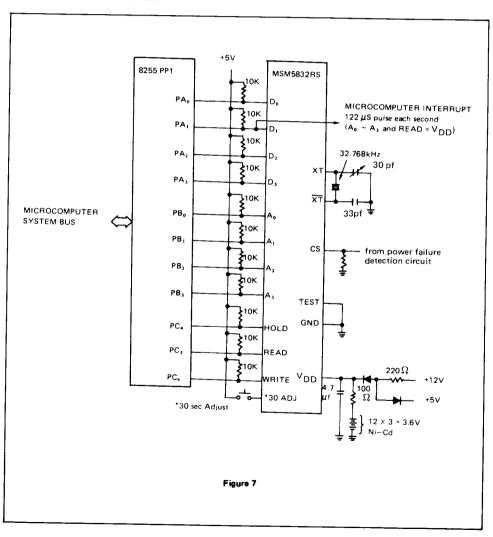
 $(V_{DD} = 5V \pm 5\%, Ta = 25^{\circ}C)$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
HOLD Set-up Time	tHS		150	_	_	μs
HOLD Bold Time	tнн		0	_	-	μs
HOLD Pulse Width	thw		_	_	990	ms
HOLD "L" Hold Time	tHL		130	-	_	μs
ADDRESS Pulse Width	tAW		1.7	_	_	μs
Data Pulse Width	tDW		1.7	_	-	μς
DATA Set-up Time	t _{DS}		0.5	-		μς
DATA Hold Time	tDH		0.2	_	_	μς
WRITE Pulse Width	tww		1.0	_	_	μς
CS Enable Delay Time	tCS1		-	-	0.6	μs
CS Disoble Delay Time	tcs2		_	_	0.6	μs

Notes:1. A WRITE occurs during the overlap of a high CS, a high HOLD and a high WRITE.

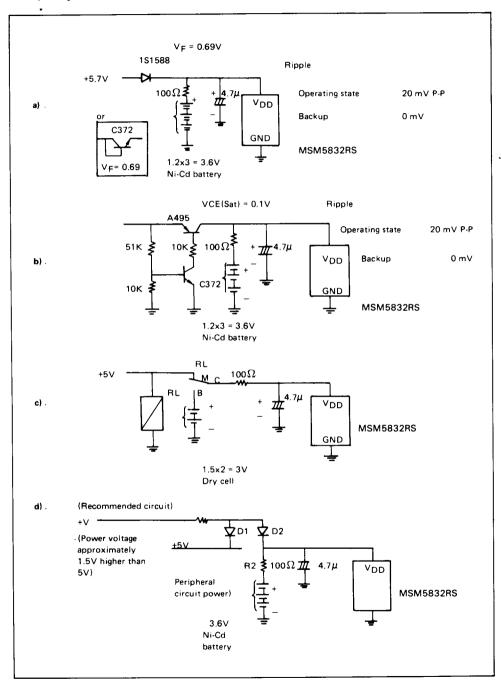
2. CS may be permanent "1", or may be coincident with HOLD pulse.

PIN DESCRIPTION


Name	Pin No.	Description					
V _{DD}	1	Power supply pin. Application circuits for power supply are described in Figure 9.					
WRITE	2	Data write pin. Data write cycle is described in Figure 4.					
READ	3	Data read pin. Data read cycle is described in Figure 3.					
A ₀ ~ A ₃	4 ~ 7	Address input pins used to select internal counters for read/write operations. The address is specified by 4-bit binary code as shown in Table 1.					
c s	8	Chip slect pin which is required to interface with the external circuit. HOLD, WRITE, READ, ± 30 ADJ, TEST, $D_0 \sim D_3$ and $A_0 \sim A_3$ pins are activated if CS is set at H level, while all of these pins are disabled if CS is set at L level.					
D₀ ~ D₃	9 ~ 12	Data input/output pins (bidirectional bus). As shown in Figure 5, external pull-up registers of 4.7 k $\Omega\sim$ 10 k Ω are required by the open-drain NMOS output. D ₃ is the MSB, while D ₀ is the LSB					
		P D ₀ D ₀ D ₀					
		R D, DO, DO, DEED DEED					
		MSM5832RS					
		Figure 5					

REFERENCE SIGNAL OUTPUT PIN

 Condition 	Output	Reference Frequency	Pulse Width
HOLD = L	D ₀ (1)	1024 Hz	duty 50%
READ = H	D ₁	1 Hz	122.1 μS
CS = H	D ₂	1/60 Hz	122.1 µS
$A_0 \sim A_3 = H$	D ₃	1/3600 Hz	122.1 µS


^{(1) 1024} Hz signal at D_0 not dependent on HOLD input level.

APPLICATION EXAMPLE

APPLICATION CIRCUIT - POWER SUPPLY CIRCUIT

Open or ground unused pins (pins other than the XT, XT, D0-D3, and BUSY pins).

Note: Use the same diodes for D1 and D2 to reduce the level difference between +5V and V_{DD} of the MSM5832RS.